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This paper assesses when the validity of difference-in-differences depends on func-
tional form. We provide a novel characterization: the parallel trends assumption holds
under all strictly monotonic transformations of the outcome if and only if a stronger
“parallel trends”-type condition holds for the cumulative distribution function of un-
treated potential outcomes. This condition for parallel trends to be insensitive to func-
tional form is satisfied if and essentially only if the population can be partitioned into
a subgroup for which treatment is effectively randomly assigned and a remaining sub-
group for which the distribution of untreated potential outcomes is stable over time.
These conditions have testable implications, and we introduce falsification tests for the
null that parallel trends is insensitive to functional form.

KEYWORDS: Difference-in-differences, functional form, robustness, testable impli-
cations.

1. INTRODUCTION

THIS PAPER STUDIES WHEN THE PARALLEL TRENDS ASSUMPTION USED for identification
in difference-in-differences (DiD) designs is insensitive to functional form. The motiva-
tion for studying this property is that it often may not be clear from theory that parallel
trends should hold for a particular choice of functional form. For example, a researcher
may be interested in the average treatment effect on the treated (ATT) in levels for a par-
ticular policy, but it may not be obvious that state-level variation in the policy generates
parallel trends specifically in levels rather than in logs or some other transformation. The
DiD design thus will often be more credible if its validity does not depend on functional
form. Our results make precise the conditions needed to ensure this form of robustness,
and suggest that researchers should be careful to give a functional form-specific justifica-
tion in settings where these conditions are not plausible.

We provide two characterizations of when parallel trends is insensitive to functional
form, in the sense that it holds for all strictly monotonic transformations of the outcome.
First, we show that parallel trends is insensitive to functional form if and only if a “parallel
trends”-type condition holds for the entire cumulative distribution function (CDF) of
Y (0). We further show that this condition can be satisfied if and essentially only if we
are in one of three cases: (i) when treatment is as-if randomly assigned, (ii) when the
distribution of Y (0) is stable over time for each treatment group, and (iii) a hybrid of
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Shapiro, Tymon Słoczyński, Alex Torgovitsky, Kaspar Wüthrich, three anonymous referees, and seminar par-
ticipants at Brandeis, University of Chicago, Hebrew University, LMU Munich, UC-Berkeley, UC-Davis, the
Southern Economic Association annual conference, and the Chamberlain Seminar for helpful comments and
conversations. A replication file is posted (Roth and Sant’Anna (2023)).

© 2023 The Econometric Society https://doi.org/10.3982/ECTA19402

https://www.econometricsociety.org/
mailto:jonathanroth@brown.edu
mailto:pedro.h.santanna@vanderbilt.edu
https://www.econometricsociety.org/
https://doi.org/10.3982/ECTA19402


738 J. ROTH AND P. H. C. SANT’ANNA

the first two cases in which the population is a mixture of a subpopulation that is (as-if)
randomized between treatment and control and another subpopulation that has stable
untreated potential outcome distributions over time. In settings where the treatment is
not (as-if) randomly assigned, the assumptions needed for the insensitivity of parallel
trends to functional form will thus often be quite restrictive.

These conditions have testable implications, and we introduce tests for the null hy-
pothesis that parallel trends is insensitive to functional form. Such tests can be useful in
flagging situations where the researcher should be particularly careful about justifying
the parallel trends assumption for the specific functional form chosen for the analysis. We
illustrate how the proposed tests can be used in a stylized analysis of the effects of the
minimum wage.

Previous papers have noted that the parallel trends assumption may hold in logs but not
levels or vice versa (e.g., Meyer (1995), Athey and Imbens (2006), Kahn-Lang and Lang
(2020)). However, to our knowledge we provide the first full characterization of when it is
sensitive to functional form. The conditions that we derive are also related to, but distinct
from, assumptions introduced previously for identifying distributional treatment effects
in DiD settings (e.g., Athey and Imbens (2006)); see Remark 4 for details.

2. MODEL

We consider a canonical two-period difference-in-differences model. There are two
periods t = 0�1, and units indexed by i come from one of two populations denoted by Di ∈
{0�1}. Units in the Di = 1 (treated) population receive treatment beginning in period t =
1, and units in the Di = 0 (comparison) population never receive treatment. We denote
by Yit (1), Yit (0) the potential outcomes for unit i in period t under treatment and control,
respectively, and we observe the outcome Yit = DiYit (1) + (1−Di)Yit (0). We assume that
there are no anticipatory effects of treatment, so that Yi0(1) = Yi0(0) for all i. The average
treatment effect on the treated is defined as

τATT = E
[
Yi1(1) −Yi1(0) |Di = 1

]
�

REMARK 1—Implications for other settings: We consider a two-period model for expo-
sitional simplicity. Our results have immediate implications for DiD settings with multi-
ple periods and staggered treatment timing, as in these contexts researchers often impose
that the two-group, two-period version of parallel trends holds for many combinations
of groups and time periods; see Roth, Sant’Anna, Bilinski, and Poe (2022) for a review.
Similarly, our identification results would go through in settings with conditional paral-
lel trends (e.g., Abadie (2005), Sant’Anna and Zhao (2020)) if all probability statements
were conditional on covariates.

3. INVARIANCE OF PARALLEL TRENDS

The classical assumption that allows for point identification of the ATT in the DiD
design is the parallel trends assumption, which imposes that

E
[
Yi1(0) |Di = 1

] −E
[
Yi0(0) | Di = 1

] = E
[
Yi1(0) |Di = 0

] −E
[
Yi0(0) |Di = 0

]
� (1)

Under the parallel trends assumption, the ATT is identified: τATT = (μ11 − μ10) − (μ01 −
μ00), where μdt = E[Yit | Di = d]. We assume throughout that the four expectations in (1)
exist and are finite. Following Athey and Imbens (2006), we say that the parallel trends
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assumption is invariant to transformations if the parallel trends assumption holds for all
strictly monotonic transformations of the outcome.

DEFINITION 1: We say that the parallel trends assumption is invariant to transforma-
tions (a.k.a. insensitive to functional form) if

E
[
g
(
Yi1(0)

) |Di = 1
] −E

[
g
(
Yi0(0)

) | Di = 1
]

= E
[
g
(
Yi1(0)

) |Di = 0
] −E

[
g
(
Yi0(0)

) |Di = 0
]

for all strictly monotonic functions g such that the expectations above are finite.

Our first result characterizes when parallel trends is invariant to transformations.

PROPOSITION 3.1: Parallel trends is invariant to transformations if and only if

FYi1(0)|Di=1(y) − FYi0(0)|Di=1(y) = FYi1(0)|Di=0(y) − FYi0(0)|Di=0(y)� for all y ∈ R (2)

where FYit (0)|Di=d(y) is the cumulative distribution function of Yit (0) |Di = d.

PROOF: If (2) holds, then from integrating on both sides of the equation it is immediate
that∫

g(y) dFYi1(0)|Di=1 −
∫

g(y) dFYi0(0)|Di=1 =
∫

g(y) dFYi1(0)|Di=0 −
∫

g(y) dFYi0(0)|Di=0 (3)

for any strictly monotonic g such that the integrals exist and are finite, and hence parallel
trends is invariant to transformations.

Conversely, if parallel trends is invariant to transformations, then (3) holds for every
strictly monotonic g such that the expectations exist and are finite. In particular, it holds
for the identity map g1(y) = y as well as the map g2(y) = y − 1[y ≤ ỹ] for any given ỹ ∈R.
Then it follows that∫

y dFYi1(0)|Di=1 −
∫

y dFYi0(0)|Di=1 =
∫

y dFYi1(0)|Di=0 −
∫

y dFYi0(0)|Di=0�

and ∫ (
y − 1[y ≤ ỹ]

)
dFYi1(0)|Di=1 −

∫ (
y − 1[y ≤ ỹ]

)
dFYi0(0)|Di=1

=
∫ (

y − 1[y ≤ ỹ]
)
dFYi1(0)|Di=0 −

∫ (
y − 1[y ≤ ỹ]

)
dFYi0(0)|Di=0�

Subtracting the second equation from the first in the previous display, we obtain
∫

1[y ≤ ỹ]dFYi1(0)|Di=1 −
∫

1[y ≤ ỹ]dFYi0(0)|Di=1

=
∫

1[y ≤ ỹ]dFYi1(0)|Di=0 −
∫

1[y ≤ ỹ]dFYi0(0)|Di=0�

which is equivalent to (2) by the definition of the CDF and the fact that ỹ is arbitrary.
Q.E.D.
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Proposition 3.1 shows that parallel trends is invariant to transformations if and only if
a “parallel trends”-type assumption holds for the CDFs of the untreated potential out-
comes. We note that if the outcome is continuous, then parallel trends of CDFs is equiv-
alent to parallel trends of PDFs (almost everywhere). The following result provides a
characterization of how distributions satisfying this assumption can be generated.

PROPOSITION 3.2: Suppose that the distributions Yit (0)|Di = d for all d� t ∈ {0�1} have
a Radon–Nikodym density with respect to a common dominating, positive σ-finite measure.
Then parallel trends is invariant to transformations if and only if there exists θ ∈ [0�1] and
CDFs Gt (·) and Hd(·) depending only on time and group, respectively, such that

FYit (0)|Di=d(y) = θGt (y) + (1 − θ)Hd(y) for all y ∈R and d� t ∈{0�1}� (4)

PROOF: See the Appendix. Q.E.D.

Proposition 3.2 shows that parallel trends of CDFs is satisfied if and only if the un-
treated potential outcomes for each group and time can be represented as a mixture of a
common time-varying distribution that does not depend on group (with weight θ) and a
group-specific distribution that does not depend on time (with weight 1 −θ). This implies
that there are three cases in which parallel trends will be insensitive to functional form,
depending on the value of θ.

Case 1: Random Assignment. (θ = 1). The case θ = 1 corresponds with imposing that
the distributions of Y (0) for the treated and comparison groups are the same in each
period, FYit (0)|Di=1(y) = FYit (0)|Di=0(y), for t = 0�1, and all y , as occurs under (as-if) random
assignment of treatment.

Case 2: Stationary Y (0). (θ = 0). The case θ = 0 corresponds with imposing that the
distribution of Y (0) for both the treated and comparison populations does not depend
on time, that is, FYi1(0)|Di=d(y) = FYi0(0)|Di=d(y), for d = 0�1, and all y .

Case 3: Nonrandom Assignment and Nonstationarity. (θ ∈ (0�1)). The case θ ∈ (0�1)
corresponds with a hybrid of Cases 1 and 2. In each period, we can partition the treated
and comparison groups so that θ fraction of each group have the same distribution (Gt),
as if they were randomly assigned, and 1 − θ fraction have a group-specific distribution
that does not depend on time (Hd). This is perhaps the most interesting case, since in the
other two cases a single difference (either across time or across groups) would suffice to
identify the ATT.

REMARK 2—Use of phrase “essentially only if”: The simplest way for Case 3 to hold
is to have a θ fraction of the population that is as-if randomized between treatment and
control and a 1−θ fraction that has stationary potential outcomes. In principle, though, it
is possible for the units in the θ and 1−θ partitions to change across periods in Case 3, al-
though it is difficult to imagine scenarios where this would be the case in practice. We thus
write in the abstract that parallel trends can be invariant to transformations “essentially
only if” the population can be partitioned into groups such that one is effectively random-
ized between treatment and control, and the others have stable potential outcomes over
time.
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FIGURE 1.—Illustration of Case 3. Notes: Data generating process as discussed in Example 3.

EXAMPLE 1—Binary outcomes: Suppose the outcome is binary, Yi ∈ {0�1}. Then for
any y ∈ [0�1), FYi1(0)|Di=1(y) = 1 −E[Yi1(0) |Di = 1], and analogously for the other CDFs.
Thus, (2) is equivalent to the parallel trends assumption (1). Proposition 3.1 thus im-
plies that whenever the parallel trends assumption holds, it also holds for all monotonic
transformations of the outcome (i.e., replacing {0�1} with {a�b}). This is intuitive, as the
expectation of a binary outcome fully characterizes its distribution.

EXAMPLE 2—Normally distributed outcomes: If the distribution of Yit (0)|Di = d is
normally distributed with positive variance for all (d� t), then (2) can hold only if either
both groups have the same distribution of Y (0) in each period or the group-specific dis-
tributions of Y (0) do not change over time (Cases 1 and 2).

EXAMPLE 3—Mixtures of distributions: An example of Case 3 is illustrated in Fig-
ure 1. The distributions of potential outcomes are generated by equation (4), with θ = 1

2 ,
Gt ∼ lognormal(2 + t�1), and Hd ∼ lognormal(3 + d�1). As can be seen in the figure, the
distributions of Y (0) for the treatment and comparison groups differ from each other in
both time periods and change over time. However, the change in the PDFs is the same for
both groups, and thus our results imply that parallel trends holds for all monotonic trans-
formations of the outcome, as illustrated in Table I for the levels and log transformations.
These distributions of Y (0) could arise, for example, if half the population is younger
workers, who have untreated earnings Gt in period t regardless of treatment group, and
the other half is older workers who have untreated earnings Hd in both periods.

TABLE I

MEAN OF g(Y (0)) BY GROUP.

g Group Pre-treatment Post-treatment Change

Levels Comparison 22�65 33�12 10�47
Levels Treated 51�10 61�57 10�47
Log Comparison 2�50 3�00 0�50
Log Treated 3�00 3�50 0�50

Note: Data generating process as discussed in Example 3.
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3.1. Relationship to Prior Work

REMARK 3—Empirical papers using parallel trends of CDFs: Several empirical papers
have used a DiD design to estimate the effects of a treatment on the distribution of an out-
come. For example, Almond, Hoynes, and Schanzenbach (2011) use DiD to estimate the
effect of the food stamps program on the distribution of child birth weight. The validity of
this analysis requires parallel trends throughout the birth weight distribution—precisely
the condition that Proposition 3.1 shows is needed for the usual parallel trends assump-
tion to be insensitive to functional form. Other recent papers (e.g., Cengiz, Dube, Lind-
ner, and Zipperer (2019), Stepner (2019)) have conducted related distributional analyses.

REMARK 4—Relationship to distributional DiD models: Condition (2) implies that the
full counterfactual distribution for the treated group, Yi1(0)|Di = 1, is identified. In par-
ticular, by rearranging terms in (2), we obtain that

FYi1(0)|Di=1(y) = FYi0(0)|Di=1(y) + FYi1(0)|Di=0(y) − FYi0(0)|Di=0(y)� (5)

where the terms on the right-hand side correspond with CDFs of identified distributions.
Condition (2) may thus be reminiscent of distributional DiD models such as Athey and
Imbens (2006)’s Changes-in-Changes (CiC) model, which infers the counterfactual dis-
tribution by assuming that the mapping between quantiles of Y (0) for the treated and
comparison populations remains stable over time, that is,

FYi1(0)|Di=1(y) = FYi0(0)|Di=1

(
F−1
Yi0(0)|Di=0(FYi1(0)|Di=0(y)

))
� (6)

The two ways of inferring the counterfactual distribution agree in Cases 1 and 2 above,
but are generally nonnested otherwise. For instance, the CiC model does not hold in
the example of Case 3 shown in Figure 1 above. Conversely, one can construct examples
where the CiC model holds when Y (0) is normally distributed conditional on group and
time period (with distinct means by group/period), whereas the parallel trends of CDFs
assumption does not hold in this case as discussed in Example 2. It is also straightforward
to show that condition (5) is nonnested with the distributional DiD models of Bonhomme
and Sauder (2011) and Callaway and Li (2019).

3.2. Testable Implications of Invariance to Transformations

We now show that condition (2) has testable implications, and thus can be rejected by
the data. Recall that we can rearrange the terms in (2) to obtain that

FYi1(0)|Di=1(y) = FYi0(0)|Di=1(y) + FYi1(0)|Di=0(y) − FYi0(0)|Di=0(y)� (7)

The left-hand side of (7) is a CDF, and thus must be weakly increasing in y , but this
is not guaranteed of the right-hand side. We can thus falsify condition (7) if we reject
the null that the right-hand side of (7) is weakly increasing in y . This is in fact a sharp
testable implication, since the right-hand side of (7) is guaranteed to be right continuous
and to have limits of 0 and 1 as y → ±∞ from the properties of the CDFs in the linear
combination.
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Statistical Testing. We now describe how one can conduct such tests in practice. For
simplicity, we will focus on testing in the case where y has finite support Y , in which case
the null is equivalent to testing that the implied distribution has nonnegative mass at all
support points. That is, we are interested in testing that

fYi1(0)|Di=1(y) = fYi0(0)|Di=1(y) + fYi1(0)|Di=0(y) − fYi0(0)|Di=0(y) ≥ 0 for all y ∈Y� (8)

where fYit (0)|Di=d(y) = E[1[Yit (0) = y] | Di = d] is the probability mass function of
Yit (0)|Di = 1 at y . We can form an estimate of the implied PMF, f̂Yi1(0)|Di=1(y), us-
ing sample analogs to the right-hand side of (8). The null of interest is then that
E[f̂Yi1(0)|Di=1(y)] ≥ 0 for all y , which can be tested using methods from the moment in-
equality literature (Canay and Shaikh (2017) provide a review). Note that researchers
can also plot the implied distribution f̂Yi1(0)|Di=1(y) to visualize potential violations of the
“parallel trends of distributions” assumption. A similar approach could be taken in the
case of continuous Y using methods for testing a continuum of moment inequalities (or
by discretizing the outcome).

Empirical Illustration. We illustrate how such tests can be used with a stylized appli-
cation to the effects of the minimum wage. Our pre-treatment period is 2007 or 2010
(depending on the specification), our post-treatment period is 2015, and the treatment
is whether a state raised its minimum wage at any point between the pre-treatment and
post-treatment periods. The outcome of interest is individual wages Wi (where Wi = 0
if i is not working). We use data from Cengiz et al. (2019), who compile panel data on
state-level minimum wages and employment-to-population ratios in 25 cent wage-bins.1
Note that the employment-to-population ratio in wage bin w corresponds with the mass
function of Wi at w. For each wage bin w, we infer the treated population’s counterfac-
tual employment-to-population ratio in wage bin w as f̂Yi�post (0)|Di=1(w) = f̂Yi�pre|Di=1(w) +
(f̂Yi�post|Di=0(w) − f̂Yi�pre|Di=0(w)), where f̂Yi�t|Di=d is the sample employment-to-population
ratio in period t in states in treatment group d. In all calculations, we weight states by
their population.

Figure 2 shows the implied counterfactual densities f̂Yi�post (0)|Di=1(w) under parallel
trends of distributions. In the left panel, where the pre-treatment period is 2007, the fig-
ure shows that the implied density is negative for wages between approximately $5–7/hour.
Intuitively, this occurs because the decrease in employment in such wage bins in compar-
ison states between 2007 and 2015 is larger than the initial employment in treated states
(who had lower baseline levels in these bins). One possible explanation for this pattern
is that the increase in the federal minimum wage over this time period had a dispropor-
tionate impact on low-wage employment in states that did not have state-level minimum
wages. To formally test the null that the implied density fYi�post(0)|Di=1(w) is nonnegative for

all w, we estimate the variance-covariance matrix of the f̂Yi�post (0)|Di=1(w) using a bootstrap
at the state level, and then compare the minimum studentized value to a “least-favorable”
critical value for moment inequalities that assumes all of the moments have mean 0 (see,
e.g., Section 4.1.1 of Canay and Shaikh (2017)). Using such tests, we are able to reject the
null hypothesis that all of the implied densities are positive (p< 0�001). This suggests that

1Following Cengiz et al. (2019), wages are adjusted for inflation using the CPI-UR-S and expressed in con-
stant 2016 dollars, and we exclude from the treated group states that only had small minimum wage changes
of less than 25c (in 2016 dollars) or which affected less than 2% of the workforce.
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FIGURE 2.—Implied employment-to-population ratios for treated states in 2015.

a researcher using such a DiD analysis to estimate the ATT for an outcome of the form
g(Wi) should be careful to justify the validity of the parallel trends assumption for the par-
ticular choice of functional form. By contrast, in the right panel of Figure 2, which shows
results using the period 2010–2015, we see that the estimated counterfactual distribution
has positive density nearly everywhere, and we cannot formally reject the hypothesis that
it is positive everywhere (p = 0�29). This does not necessarily imply that parallel trends
holds for all transformations of the outcome, but insensitivity to functional form is not
rejected by the data in this example.

Caveats. We emphasize that failure to reject the null does not necessarily imply that
parallel trends is insensitive to functional form, and relying on such tests may induce
issues related to pre-testing; see Roth (2022) for a related discussion regarding testing for
pre-existing trends. Nevertheless, such tests may be useful for detecting cases where it is
clear from the data that parallel trends will be sensitive to functional form.

3.3. Extensions

Other Classes of Functions. Following Athey and Imbens (2006), we focus on when
parallel trends is invariant to all strictly monotonic transformations. One can show that
parallel trends for all strictly monotonic transformations is in fact equivalent to parallel
trends for all (measurable) transformations.2 In the working paper version of this paper,
we showed that if one restricts to a smaller subset of transformations, then the counterfac-
tual distribution for the treatment group may only be partially identified (see Appendix B
of Roth and Sant’Anna (2021)).

Other Estimators. We showed in the working paper version of this article that the ATT
is identified for all functional forms if and only if the full counterfactual distribution for
the treated group, FYi1(0)|Di=1(·), is identified (see Proposition 4.1 of Roth and Sant’Anna
(2021)). This implies that to obtain any consistent estimator of the ATT (not just DiD),
one must impose assumptions that either depend on functional form or that pin down the
full counterfactual distribution of Y (0) for the treated group.

2This is not the case for other assumptions, for example, the CiC model is invariant to strictly monotonic
transformations but not to all measurable transformations.
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Use of Pre-Treatment Periods. In settings with multiple pre-treatment periods, re-
searchers may be inclined to use the absence of pre-existing trends as a justification for
the validity of parallel trends for a particular functional form. However, as noted in Kahn-
Lang and Lang (2020), pre-treatment parallel trends is neither necessary nor sufficient
for post-treatment parallel trends (for a given functional form). Indeed, we showed in
the working paper version of this article that if the support of Y (0) is sufficiently rich,
then there will be multiple transformations g such that parallel trends holds in the pre-
treatment period and a counterfactual post-treatment distribution such that it fails for
at least one of these g. In finite samples, pre-trends tests may also have low power and
relying on them can induce pre-test bias (Roth (2022)).

4. IMPLICATIONS FOR APPLIED WORK

Our results help to clarify the different paths a researcher can take to justify point-
identification of the ATT when considering using DiD or a related research design. First,
the researcher can argue that treatment is as-if randomly assigned, which ensures iden-
tification of the average treatment effect for all functional forms. Second, the researcher
can impose distributional assumptions that pin down the full counterfactual distribution
of Yi1(0) for the treated group. This enables one to obtain an estimator that is valid for
the ATT without additional functional form restrictions. For example, imposing parallel
trends of CDFs ensures the validity of the DiD estimator for all functional forms. Finally,
the researcher can use context-specific knowledge to argue for the validity of the parallel
trends assumption for a particular functional form. A model with a Cobb–Douglas pro-
duction function for Y (0), for example, may imply parallel trends in logs but not levels.
Our hope is that the results in this paper will be useful in providing researchers with a
menu of options for more clearly delineating the justification for their research design.

APPENDIX: PROOF OF PROPOSITION 3.2

PROOF: By Proposition 3.1, it suffices to show equivalence with (2). Observe that if (4)
holds, then both sides of (2) reduce to θ(G1(y) −G0(y)), and so (4) implies (2). To prove
the converse, let Y denote the parameter space for Y (0), and Yy = {ỹ ∈ Y | ỹ ≤ y}. By
assumption, we can write

FYit (0)|Di=d(y) =
∫
Yy

fYit (0)|Di=d dλ�

where λ is the dominating measure and fYit (0)|Di=d is the density (the Radon–Nikodym
derivative). It is immediate from the previous display that if (2) holds, then fYi1(0)|Di=1 −
fYi0(0)|Di=1 = fYi1(0)|Di=0 − fYi0(0)|Di=0, λ a.e. The desired result then follows by applying
Lemma A.1 to the CDFs on both sides of (2). Q.E.D.

LEMMA A.1: Suppose the CDFs F1 and F2 are such that Fj(y) = ∫
Yy
fj dλ. Then we can

decompose Fj(y) as

Fj(y) = (1 − θ)Fmin(y) + θF̃j(y)� (9)

where Fmin and F̃1, F̃2 are CDFs, θ ∈ [0�1], and θ and F̃j depend on f1 and f2 only through
f1 − f2.
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PROOF: To prove the claim, set θ = 1−∫
Y min{f1� f2}dλ. It is immediate that θ ∈ [0�1].

Suppose first that θ ∈ (0�1). Define

fmin = min{f1� f2}∫
Y

min{f1� f2}dλ
= min{f1� f2}

1 − θ

and

f̃j(x) = fj − min{f1� f2}∫
Y

(
fj − min{f1� f2}

)
dλ

= fj − min{f1� f2}
θ

for j = 1�2�

By construction, fmin and the f̃j integrate to 1 and are nonnegative, so that Fmin(y) =∫
Yy
fmin dλ and F̃j(y) = ∫

Yy
f̃j dλ are valid CDFs. Moreover, fj = (1 − θ)fmin + θf̃j by con-

struction, so that (9) holds. Finally, observe that min{f1� f2} = f1 − (f1 − f2)+, where
(a)+ denotes the positive part of a. It follows that θ = 1 − ∫

Y (f1 − (f1 − f2)+) dλ =∫
Y (f1 − f2)+ dλ, which depends only on f1 − f2. (In fact, note that

∫
Y (f1 − f2)+ dλ =

1
2

∫
Y|(f1 − f2)|dλ, and thus θ is the total variation distance between f1 and f2.) Likewise,

f̃1 = (f1 − f2)+/θ and f̃2 = (f2 − f1)+/θ, and so depend only on f1 − f2. This completes the
proof for the case where θ ∈ (0�1). If θ = 0, then F1(y) = F2(y) and so the claim holds
trivially with Fmin(y) = F1(y) = F2(y) and F̃j(y) arbitrary. If θ = 1, then min{f1� f2} = 0 λ
a.e., and so f1 = (f1 − f2)+ λ a.e., and f2 = (f2 − f1)+ λ a.e. Thus, the claim holds trivially
with f̃j = fj , F̃j(y) = ∫

Yy
f̃j dλ, and Fmin(y) arbitrary. Q.E.D.
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