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This online appendix contains proofs and additional results for the paper “A More Cred-
ible Approach to Parallel Trends” by Ashesh Rambachan and Jonathan Roth. Section A
contains proofs and auxilliary lemmas for results stated in the main text. Section B contains
additional details and results from our simulations. Section C compares our confidence sets
to the sample analog to the identified set in our empirical applications.

A Proofs of Results in Main Text

Proof of Lemma 2.2

Proof. By equation (7), we can write the coverage requirement as

inf
δP∆,τ

inf
k

inf
θPSpδ`τ,∆kq

Pβ̂n„N pδ`τ,Σnq

˜

θ P
ď

k1

Cn,k1pβ̂n,Σnq

¸

ě 1 ´ α.

The left-hand side is bounded below by

inf
δP∆,τ

inf
k

inf
θPSpδ`τ,∆kq

Pβ̂n„N pδ`τ,Σnq

´

θ P Cn,kpβ̂n,Σnq

¯

,

which is at least 1 ´ α since Cn,kpβ̂n,Σnq satisfies (10) for ∆ “ ∆k for all k.

Proof of Proposition 3.1

Proof. We verify that the conditions of the proposition are sufficient for the conditions for
size control for the conditional and hybrid tests given in Proposition 2 of ARP. Note that in
our setting, the non-stochastic variable X̃ plays the role of the instruments Z in ARP, so all
statements in ARP conditional on Z can be interpreted as unconditional in our context.

First, suppose that Assumption 5(A) holds. Then we can write Ỹnpθq “ Aβ̂n ´ d ´

Ãp¨,1qθ “ TUnpθq ´ ζpθq, where Unpθq “ Qβ̂n and ζpθq “ d ` Ãp¨,1qθ is non-stochastic,
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which is the structure required by the first part of Assumption 1 of ARP.39 Note that
ΩP :“ V arP pUnpθqq “ QΣPQ

1. Since Q is full-rank by assumption and ΣP has eigenvalues
bounded away from zero by Assumption 3, so too does ΩP “ QΣPQ

1, as required by the
latter part of Assumption 1 in ARP. Next, note that our estimate of the variance of Ỹnpθq,
AΣ̂nA

1, can be expressed as T Ω̂nT , for Ω̂n “ QΣ̂nQ
1. It is immediate from Assumption 4

that Ω̂n is uniformly consistent for ΩP , as required in Assumption 2 in ARP. Next, note that
if f P BL1, then gpxq “ ||G||´1

op fpGxq is also in BL1, where || ¨ ||op is the operator norm. This
implies that

sup
fPBL1

ˇ

ˇ

ˇ
EP

”

fp
?
nQpβ̂ ´ βP q

ı

´ E rfpQξP qs

ˇ

ˇ

ˇ
ď ||Q||op sup

fPBL1

ˇ

ˇ

ˇ
EP

”

fp
?
npβ̂ ´ βP q

ı

´ E rfpξP qs

ˇ

ˇ

ˇ
.

Since Unpθq “ Qβ̂n, Assumption 2 together with the previous argument implies that

lim
nÑ8

sup
PPP

sup
fPBL1

ˇ

ˇ

ˇ
EP

“

fp
?
npUnpθq ´ QβP q

‰

´ E
”

fpξ̃P q

ı
ˇ

ˇ

ˇ
“ 0,

where ξ̃P „ N p0, ΩP q. This verifies Assumption 3 in ARP. Note that Assumption 5(A)
implies that Assumption D.1 in ARP is satisfied, and Assumption D.2 in ARP is trivially
satisfied for X “ tX̃u. Hence, Proposition D.1 in ARP implies that Assumption 4 in ARP
is satisfied. We have thus verified the conditions for size control in Proposition 2 of ARP.

Second, consider the case where Assumption 5(B) holds. In this case, we can write
Ỹnpθq “ TUnpθq ´ ζpθq, where now T “ A, Unpθq “ β̂n, and ζpθq “ d` Ãp¨,1qθ. Assumptions
1-3 in ARP can be verified analogously to the arguments above for the case where T is as
given in Assumption 5(A). To verify Assumption 4 in ARP, we must show that

sup
ΣP PS

min
γ,γ̃PV:pΣP q,γ‰γ̃,aě0

pγ ´ aγ̃q
1AΣPA

1
pγ ´ cγ̃q ą 0,

where V:pΣq is the subset of vertices in V pΣq that can be optimal when η̂ ą 0 (see Lemma
4 in ARP). By Lemma A.1 below, each γ P V pΣP q can be written as cjpΣP qγ̄j for some
element γ̄j P V pIq. Moreover, cjpΣP q “ pγ̄1

jσ̃pΣP qq´1, where σ̃pΣP q is the square root of the
diagonal elements of ΩP “ AΣPA

1. However, the jth diagonal element of ΩP is Apj,¨qΣPA
1
pj,¨q,

where Apj,¨q is the jth row of A. Since the eigenvalues of ΣP are bounded above by λ̄, it
follows that Apj,¨qΣPA

1
pj,¨q is bounded above by λ̄||Apj,¨q||

2. The elements of σ̃pΣP q are thus

39Assumption 1 of ARP imposes the structure Yi “ TUi`ζi, where the index i corresponds with individual
observations and the sample moments are formed by averaging across i. However, this structure is only used
in the proofs of size control to show that the scaled sample moments, denoted Yn,0 in ARP, have the structure
Yn,0 “ TUn,0 ` ζn,0pθq, where Un,0 and ζn,0 are sample averages of Ui and ζi. In our setting Ỹn is analogous
to 1?

n
Yn,0 in ARP, and we thus verify this structure directly.
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bounded above, and hence cjpΣP q is bounded away from zero. Thus, there exists a
¯
c such

that cjpΣP q ě
¯
c for all ΣP P S. Hence,

sup
ΣP PS

min
γ,γ̃PV:pΣP q,γ‰γ̃,aě0

pγ ´ aγ̃q
1AΣPA

1
pγ ´ aγ̃q ě

¯
c2
ˆ

sup
ΣP PS

min
γ,γ̃PV pIq,γ‰γ̃,aě0

pγ ´ aγ̃q
1AΣPA

1
pγ ´ aγ̃q

˙

ě
¯
c2
ˆ

min
γ,γ̃PV:pIq,γ‰γ̃,aě0

||pγ ´ aγ̃q
1A||

2

¯
λ

˙

,

where the second inequality uses the fact that the minimal eigenvalue of ΣP is at least
¯
λ.

To complete the proof, it thus suffices to show that V:pIq contains only vertices such that
γ̄1
jA ‰ 0, so that the lower bound obtained in the previous display is strictly positive by

Assumption 5(B). To show this, note that if γ̄1
jA “ 0, then γ̄1

jỸnpθ̄q “ γ̄1
jpAβ̂n ´d´ Ãp¨,1qθ̄q “

´γ̄1
jd. Since ∆ is non-empty, there exists some δ such that Aδ ´ d ď 0, which implies

that ´γ̄1
jd “ γ̄1

jpAδ ´ dq ď 0 since γ̄j ě 0 by construction. We have thus established that
γ̄1
jỸ pθ̄q ď 0, and hence γ̄j can never be optimal when η̂ ą 0, so γ̄j R V:pIq. We have thus

verified that Assumption 4 in ARP holds, as needed.

A.1 Proof and auxiliary lemmas for uniform consistency

Proof of Proposition 3.2

Proof. Towards contradiction, suppose that the conditional test is not consistent. Then there
exists an increasing sequence of sample sizes and distributions pnm, Pmq, x ą 0, and ω ą 0

such that

lim sup
mÑ8

EPm

„

ψC
α pβ̂nm , A, d, θ

ub
Pm

` x,
1

n
Σ̂nmq

ȷ

ď 1 ´ ω.

It is straightforward to verify that the conditional test is invariant to a re-scaling of the units
of β̂, so that ψC

α pβ̂nm , A, d, θ
ub
Pm

` x, 1
nm

Σ̂nmq “ ψC
α p

?
nmβ̂nm , A,

?
nmd,

?
nmpθubPm

` xq, Σ̂nmq.
Thus, along this sequence,

lim sup
mÑ8

EPm

”

ψC
α p

?
nmβ̂nm , A,

?
nmd,

?
nmpθubPm

` xq, Σ̂nmq

ı

ď 1 ´ ω.

Since V is compact, we can extract a further subsequence m1 under which VPm1
Ñ V ˚ for

V ˚ P V. Denote the top left block of V ˚ by Σ˚.
To obtain a contradiction, we will construct a further subsequence such that the condi-

tions of Lemma A.2 hold asymptotically with probability at least 1-ω{2. From Lemma A.1,
each element γPm1

P V pΣPm1
q can be written as cjpΣPm1

qγ̄j, where γ̄1, ..., γ̄J are the elements
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of V pIq. We argued in the proof to Proposition 3.1 that there exists a constant
¯
c such that

cjpΣP q ě
¯
c for all j whenever ΣP has eigenvalues bounded above by λ̄. By an analogous

argument, we can show that there exists a constant c̄ such that cjpΣP q ď c̄ whenever ΣP

has eigenvalues bounded below by
¯
λ. Thus,

¯
c ď cjpΣP q ď c̄ for ΣP P S. For γ P V pΣP q,

γ1AΣPA
1γ “ cjpΣP q2γ̄1

jAΣPA
1γ̄j for some j, and thus for ΣP P S, we have that

¯
c2||γ̄1

jA||
2

¯
λ ď γ1AΣPA

1γ ď c̄2||γ̄1
jA||

2λ̄.

Thus, either γ1AΣPA
1γ “ 0 (if γ̄1

jA “ 0), or

¯
c2 min

j:γ̄1
jA‰0

||γ̄1
jA||

2

¯
λ ď γ1AΣPA

1γ ď c̄2 max
j:γ̄1

jA‰0
||γ̄1

jA||
2λ̄,

where the upper and lower bounds are finite and positive since V pIq is finite. Now consider
the vertex γ̂m1,j “ cjpΣ̂nm1

qγ̄j. By the continuous mapping theorem, γ̂1
m1,j

AΣ̂PA
1γ̂m1,j Ñp

cjpΣ
˚q2γ̄1

jAΣ
˚A1γ̄j. From this convergence and the inequalities in the previous display, it

follows that there exist constants
¯
σ2 and σ̄2 such that condition (i) of Lemma A.2 is satisfied

w.p.a. 1.
Next, define

ηpβ,A, d, θ̄,Σq :“ min
η,τ̃

η s.t. Aβ ´ d ´ Ãp¨,1qθ̄ ´ Ãp¨,´1qτ̃ ď ησ̃, (21)

where σ̃ is the square root of the diagonal elements of AΣA1. Since θubP P SpβP ,∆q,
ηpβP , A, d, θ

ub
P ,ΣP q ď 0. By duality, we can write ηpβP , A, d, θ

ub
P ,ΣP q “ maxγPV pΣP q γ

1pAβP ´

d´Ãp¨,1qθ
ubq. It follows that there exists some γ̃P P V pΣP q such that γ̃1

P pAβP ´d´Ãp¨,1qθ
ubq “

0 and ´γ̃1
P Ãp¨,1q ą 0, since otherwise for ϵ ą 0 sufficiently small we would have that

ηpβP , A, d, θ
ub
P ` ϵ,ΣP q “ maxγPV pΣP q γ

1pAβP ´ d ´ Ãp¨,1qpθ
ub ` ϵqq ď 0, which would im-

ply that θub ` ϵ P SpβP ,∆q, which is a contradiction. From Lemma A.1, γ̃Pm1
P V pΣPm1

q

can be written as cjpΣPm1
qγ̄j, where cjpΣq ě

¯
c ą 0 for all Σ P S and γ̄1, ..., γ̄J are the ele-

ments of V pIq. Since V pIq is finite, we can extract a further subsequence pnl, Plq such that
γ̃Pl

“ cj˚pΣPl
qγ̃j˚ for fixed j˚. For ease of notation, without loss of generality we assume

j˚ “ 1. It follows that

ηp
?
nlβ̂nl

, A,
?
nld,

?
nlpθ

ub
Pl

` xq, Σ̂nl
q “ max

γPV pΣ̂nl
q

γ1
?
nlpAβ̂nl

´ d ´ Ãp¨,1qpθ
ub
Pl

` xqq

ě
?
nlc1pΣ̂nl

qγ̄1
1pAβ̂nl

´ d ´ Ãp¨,1qpθ
ub
Pl

` xqq

“ c1pΣ̂nl
q
?
nlγ̄

1
1Apβ̂nl

´ βPl
q `

?
nlc1pΣ̂nl

qp´γ̃1
1Ãp¨,1qqx.
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By the continuous mapping theorem, c1pΣ̂nl
q Ñp c1pΣ

˚q ą 0. Assumption 6 and the contin-
uous mapping theorem together imply that the first term in the previous display converges
in distribution to a N p0, c1pΣ˚q2γ̄1

1AΣ
˚A1γ̄1q distribution, while the second term converges

in probability to 8. It follows that ηp
?
nlβ̂l, A,

?
nld,

?
nlpθ

ub
Pl

` xq, Σ̂nl
q Ñp 8, and thus

condition (ii) of Lemma A.2 holds w.p.a. 1 for any value of M .
To complete the proof, we construct a further subsequence such that condition (iii) of

Lemma A.2 holds asymptotically with probability at least 1-ω{2. Let Ỹl “ Aβ̂nl
´ d ´

Ãp¨,1qpθ
ub
Pl

` xq and µ̃l “ AβPl
´ d ´ Ãp¨,1qpθ

ub
Pl

` xq. Recall that any element of V pΣ̂nl
q, say

γl,j, takes the form γl,j “ cjpΣ̂nl
qγ̄j, and our argument above implies that γ̄1

jµ̃l ď ´γ̄1
jÃp¨,1qx.

Since cjpΣ̂nl
q Ñp cjpΣ

˚q ą 0 by the continuous mapping theorem, and γ̄1
jµ̃l is bounded from

above, we can extract a subsequence l1 along which γ1
l1,j
µ̃l1 Ñp νj P R Y t´8u. The vertex

set is finite, and so passing to further subsequences we obtain a subsequence indexed by k

such that γ1
k,jµ̃k Ñp νj P R Y t´8u for all j. Observe that for distinct vertices i and j with

γ̄1
iA ‰ 0,

pcipΣ̂nk
qγ̄i ´ cjpΣ̂nk

qγ̄jq
1
?
nkỸk “pcipΣ̂nk

qγ̄i ´ cjpΣ̂nk
qγ̄jq

1
?
nkpỸk ´ µ̃kq`

?
nkpcipΣ̂nk

q ´ cipΣ
˚
qqγ̄1

iµ̃k ´
?
nkpcjpΣ̂nk

q ´ cjpΣ
˚
qqγ̄1

jµ̃k`

?
nkpcipΣ

˚
qγ̄1

i ´ cjpΣ
˚
qγ̄1

jqµ̃k

Consider first the case where γ1
k,iµ̃k and γ1

k,jµ̃k both have finite limits νi and νj. Since
?
nkpcipΣ

˚qγ̄1
i ´ cjpΣ

˚qγ̄1
jqµ̃k is non-stochastic, we can extra a further subsequence k1 such

that ?
nk1pcipΣ

˚qγ̄1
i ´ cjpΣ

˚qγ̄1
jqµ̃k1 Ñ ν˚ P R Y t˘8u. Assumption 6 and the continuous

mapping theorem imply that pcipΣ̂nk1
qγ̄i ´ cjpΣ̂nk1

qγ̄jq
1?nk1Ỹk1 converges in distribution to

ζij “ pcipΣ
˚
qγ̄i ´ cjpΣ

˚
qγ̄jq

1Aξβ `
νi

cipΣ˚q
Dc1

iξΣ ´
νj

cjpΣ˚q
Dc1

jξΣ ` ν˚,

where pξ1
β, ξ

1
Σq1 „ N p0, V ˚q and Dci is the gradient of cipΣ˚q with respect to vecpΣ˚q. The

limiting distribution is normal, and limiting variance must be positive since Assumptions
5 and 7 imply that pcipΣ

˚qγ̄i ´ cjpΣ
˚qγ̄jq

1Aξβ has positive variance40 and is not perfectly
colinear with ξΣ. It follows that for any ϑ, there exists some ϵ ą 0 such that the probability
that ζij P p´ϵ, ϵq is less than ϑ. On the other hand, if γ̄1

iµ̃k Ñ ´8, then cipΣ̂nk
qγ̄i

?
nkỸk Ñp

´8, so cipΣ̂nk
qγ̄i is optimal for η̂p

?
nkβ̂nk

,
?
nkd,

?
nkpθubPk

` xq, Σ̂nk
q w.p.a. 0, whereas if

γ̄1
jµ̃k Ñ ´8, then η̂p

?
nkβ̂nk

,
?
nkd,

?
nkpθubPk

` xq, Σ̂nk
q ´ cjpΣ̂kqγ1

j

?
nkỸk Ñp 8. Since there

40This is immediate under Assumption 5(B). Under Assumption 5(A), the proof of Proposition D.1 in
ARP shows that if there is a positive constant c such pγ̄i ´ cγ̄jq1A “ 0, then cipΣ̂nk

qγ̄i and cjpΣ̂nk
qγ̄j can

only be optimal vertices if η̂ ď 0. Since we’ve shown η̂ Ñp 8, such vertices will be optimal w.p.a. 0, and
thus can be ignored when establishing part (iii) of Lemma A.2.
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are a finite number of pairs of vertices, we can choose ϑ such that the probability that
ζij P p´ϵ, ϵq for any pi, jq is bounded above by ω{2, and thus condition (iii) of Lemma A.2 is
satisfied with probability at least ω{2, as we wished to show. The result for the hybrid test
is immediate from the fact that the hybrid test rejects whenever the size-α´κ

1´κ
conditional

test rejects.

Lemma A.1. Let F pΣq :“ tγ : Ã1
p¨,´1q

γ “ 0, σ̃pΣq1γ “ 1, γ ě 0u be the feasible set of the
dual problem, where σ̃pΣq is the vector containing the square-roots of the diagonal elements
of AΣA1. Let V pΣq denote the set of vertices of F pΣq. Then, for any Σ positive definite,

V pΣq “ tc1pΣqγ̄1, ..., cJpΣqγ̄Ju,

where γ̄1, ..., γ̄J are the elements of V pIq and cjpΣq “ pγ̄1
jσ̃pΣqq´1.

Proof of Lemma A.1

Proof. Immediate from Lemma A.2 in ARP.

Lemma A.2. For any positive constants ϵ,
¯
σ2, σ̄2, there exists a finite constant C̄ such that

the conditional test ψC
α pβ̂, A, d, θ,Σq rejects whenever the following conditions are satisfied

(i) For all γ P V pΣq, either γ1AΣA1γ “ 0 or
¯
σ2 ď γ1AΣA1γ ď σ̄2.

(ii) η̂ “ maxγPV pΣq γ
1Ỹ ą C̄, where Ỹ “ Aβ̂ ´ d ´ Ãp¨,1qθ.

(iii) If the optimal vertex γ˚ satisfies, γ1
˚AΣA

1γ˚ ą 0, then for all γ̃ P V pΣq with γ̃ ‰ γ˚, we
have that |γ1

˚Ỹ ´ γ̃1Ỹ | ą ϵ.

Proof. Let Σ̃ “ AΣA1. If the optimal vertex γ˚ satisfies γ1
˚Σ̃γ˚ “ 0, then the conditional

test rejects whenever η̂ ą 0, so condition (ii) with any C ą 0 suffices. For the remainder of
the proof, we show that conditions (i)-(iii) are sufficient when γ1

˚Σγ˚ ‰ 0. Observe that the
conditional test rejects if and only if η̂ ą 0 and

Φptq ´ Φpzloq

Φpzupq ´ Φpzloq
ą 1 ´ α,

where t “
η̂
σ˚ , zlo “ vlo

σ˚ , zup “ vup

σ˚ , and σ˚ “

b

γ1
˚Σ̃γ˚. It is clear that the left-hand side of

the previous display is increasing in t and decreasing in zup. It is also decreasing in zlo, since
the derivative with respect to zlo is

´
ϕpzloqpΦpzupq ´ Φpzloqq

pΦpzupq ´ Φpzloqq2
ă 0.
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From Lemma A.3 below, condition (iii) implies that η̂ ´ vlo ě ϵ, and thus zlo ď t ´ ϵ̃, for
ϵ̃ “ ϵ{σ̄. This, combined with the previous discussion, implies that the conditional test
rejects whenever η̂ ą 0 and

Φptq ´ Φpt ´ ϵ̃q

1 ´ Φpt ´ ϵ̃q
ą 1 ´ α.

By L’Hopitale’s rule, we have that

lim
tÑ8

Φptq ´ Φpt ´ ϵ̃q

1 ´ Φpt ´ ϵ̃q
“ lim

tÑ8

ϕpt ´ ϵ̃q ´ ϕptq

ϕpt ´ ϵ̃q
“ lim

tÑ8
1 ´

ϕptq

ϕpt ´ ϵ̃q
“ 1.

Hence, there exists C̃ ą 0 such that the conditional test rejects whenever t ě C̃. But t “
η̂
σ˚

and thus t ą C̃ whenever η̂ ą C̄ for C̄ “ C̃σ̄.

Lemma A.3. Consider the conditional test ψC
α pβ̂, A, d, θ,Σq. If the optimal vertex γ˚ is such

that γ1
˚AΣA

1γ˚ ą 0, then η̂ ´ vlo ě minγPV pΣq,γ‰γ˚
|γ1

˚Ỹ ´ γ1Ỹ | where Ỹ “ Aβ̂ ´ d ´ Ãp¨,1qθ.
Similarly, vup ´ η̂ ě

γ1
˚AΣA1γ˚

maxγPV pΣq γ1AΣA1γ
minγPV pΣq,γ‰γ˚

|γ1
˚Ỹ ´ γ1Ỹ |.

Proof. Since η̂ is finite, the results hold trivially when vlo and vup are infinite. For the
remainder of the proof, we assume that they are finite. Let Σ̃ “ AΣA1. Lemma 1 in ARP
implies that

vlo “ min
γPV pΣq:γ1

˚Σ̃γ˚´γ1
˚Σ̃γą0

γ1
˚Σ̃γ˚γ

1S

γ1
˚Σ̃γ˚ ´ γ1

˚Σ̃γ
,

where S “ pI ´
Σ̃γ˚

γ1
˚Σ̃γ˚

γ1
˚qỸ . Let γ̃ denote the vertex at which the minimum is obtained.

Substituting in the definition of S and re-arranging terms, we obtain that

η̂ ´ vlo “
γ1

˚Σ̃γ˚

γ1
˚Σ̃γ˚ ´ γ1

˚Σ̃γ̃
pγ1

˚Ỹ ´ γ̃1Ỹ q ě pγ1
˚Ỹ ´ γ̃1Ỹ q,

from which the result for vlo is immediate. We can analogously show that

vup ´ η̂ “
γ1

˚Σ̃γ˚

γ1
˚Σ̃γ̃ ´ γ1

˚Σ̃γ˚

pγ1
˚Ỹ ´ γ̃1Ỹ q,

for a vertex γ̃ such that γ1
˚Σ̃γ̃ ´ γ1

˚Σ̃γ˚ ą 0. The result then follows from noting that

γ1
˚Σ̃γ˚

γ1
˚Σ̃γ̃ ´ γ1

˚Σ̃γ˚

ě
γ1

˚Σ̃γ˚

γ1
˚Σ̃γ̃

ě
γ1

˚Σ̃γ˚

maxγPV pΣq γ1Σ̃γ
.
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A.2 Proof and auxiliary lemmas for uniform local asymptotic power

Proof of Proposition 3.3

Proof. By an invariance to scale argument as in Proposition 3.2, it is sufficient to show that

lim
nÑ8

sup
PPPϵ

ˇ

ˇ

ˇ
EP

”

ψC
α p

?
nβ̂n, A,

?
nd,

?
nθubP ` x, Σ̂nq

ı

´ ρ˚
αpP, xq

ˇ

ˇ

ˇ
“ 0.

To show this, it suffices to establish that for every subsequence pnm, Pmq with nm Ñ 8,
there exists a further subsequence l such that

lim
lÑ8

ˇ

ˇ

ˇ
EPl

”

ψC
α p

?
nlβ̂nl

, A,
?
nld,

?
nθubPl

` x, Σ̂nl
q

ı

´ ρ˚
αpPl, xq

ˇ

ˇ

ˇ
“ 0.

Since Pm P Pϵ, for each m there exists a B˚
m and a value τ̃˚

m such that

ApB˚
m,¨qβPm ´ dB˚

m
´ ÃpB˚

m,1qθ
ub
Pm

´ ÃpB˚
m,´1qτ̃

˚
m “ 0 (22)

Ap´B˚
m,¨qβPm ´ d´B˚

m
´ Ãp´B˚

m,1qθ
ub
Pm

´ Ãp´B˚
m,´1qτ̃

˚
m ă ´ϵ. (23)

Since there are a finite number of possible values of B˚
m, we can extract a subsequence m1

along which B˚
m1

is constant. For simplicity of notation, we’ll denote the constant value
B˚

m1
by B˚. Similarly, Lemma A.4 implies that there is a unique element γ˚

m1
P V pΣPm1

q

such that the elements of γ˚
m1

in positions ´B˚ are all 0. By Lemma A.1, we can write
γ˚
m1

“ cjpΣPm1
qγ̄j for cjp¨q a continuous function and γ̄j P V pIq. Since V pIq is finite,

we can extract a subsequence m2 along which γ˚
m2

“ cj˚pΣPm2
qγ̄j˚ for a fixed j˚, which

without loss of generality we normalize to j˚ “ 1. Moreover, since S is compact, we can
extract a further subsequence l along which ΣPl

Ñ Σ˚. By Assumption 4, Σ̂nl
Ñp Σ

˚. The
continuous mapping theorem then implies that γ˚

l “ c1pΣPl
qγ̄1 Ñ c1pΣ

˚qγ̄1, and likewise,
γ̂˚
l :“ c1pΣ̂nl

qγ̄1 Ñp c1pΣ
˚qγ̄1. From Lemma A.9, we have that

ρ˚
αpPl, xq “ Φ

˜

´γ˚1
l Ãp¨,1qx

a

γ˚1
l AΣPl

A1γ˚
l

´ z1´α

¸

,

which combined with the convergences shown above implies that

ρ˚
αpPl, xq Ñ Φ

˜

´γ̄1
1Ãp¨,1qx

a

γ̄1
1AΣ

˚A1γ̄1
´ z1´α

¸

. (24)

Now, for the function ηp¨q defined in (21), let

η̂l “ ηp
?
nlβ̂nl

, A,
?
nld,

?
nlθ

ub
Pl

` x, Σ̂nl
q.
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By duality, we have that

η̂l “ max
γPV pΣ̂nl

q

γ1
´?

nAβ̂nl
´

?
nld ´

?
nlÃp¨,1qθ

ub
Pl

´ Ãp¨,1qx
¯

ě γ̂˚1
l

´?
nAβ̂nl

´
?
nld ´

?
nlÃp¨,1qθ

ub
Pl

´ Ãp¨,1qx
¯

.

By construction, γ̂˚
l has zero elements in positions ´B˚ and satisfies γ̂˚1

l Ãp¨,´1q “ 0. This,
combined with equation (22) implies that

γ̂˚1
l

´

?
nlAβ̂nl

´
?
nld ´

?
nlÃp¨,1qθ

ub
Pl

´ Ãp¨,1qx
¯

“ γ̂˚1
l A

?
nlpβ̂nl

´ βPl
q ´ γ̂˚1

l Ãp¨,1qx.

From Assumption 2 combined with Slutsky’s lemma, we have that

γ̂˚1
l A

?
nlpβ̂nl

´ βPl
q ´ γ̂˚1

l Ãp¨,1qx Ñd N
´

´c1pΣ
˚
qγ̄1

1Ãp¨,1qx, c1pΣ
˚
q
2γ̄1

1AΣ
˚A1γ̄1

¯

.

Now, consider γ̂l,j “ cjpΣ̂nl
qγ̄j for j ‰ 1. By construction γ̄j ě 0, and Lemma A.4 implies

that γ̄j has a non-zero element in at least one component in B˚. But this, combined with
equations (22) and (23) and the fact that cjpΣ̂nl

q Ñp cjpΣ
˚q ą 0, implies that

γ̂1
l,j

´

?
nlAβPl

´
?
nld ´

?
nlÃp¨,1qθ

ub
Pl

´ Ãp¨,1qx
¯

Ñp ´8,

and thus
γ̂1
l,j

´

?
nlAβ̂nl

´
?
nld ´

?
nlÃp¨,1qθ

ub
Pl

´ Ãp¨,1qx
¯

Ñp ´8,

as well, since as before γ̂1
l,jA

?
npβ̂nl

´ βPl
q converges in distribution to a normal distribu-

tion with finite variance. This implies that γ̂˚
l is the optimizer of the problem for η̂l with

probability approaching 1, and thus

η̂l Ñd N
´

´c1pΣ
˚
qγ̄1

1Ãp¨,1qx, c1pΣ˚
q
2γ̄1

1AΣ
˚A1γ̄1

¯

.

This also implies that for any j ‰ 1, |η̂l ´ γ̂1
l,jỸl| Ñp 8, where Ỹl “

?
nlAβ̂nl

´
?
nld ´

?
nlÃp¨,1qθ

ub
Pl

´ Ãp¨,1qx. Since there are a finite number of vertices, it follows that minj‰1 |η̂l ´

γ̂1
l,jỸl| Ñ ´8. This together with the result of Lemma A.3 implies that |η̂l ´ vlol | Ñp 8 and

|η̂l´v
up
l | Ñp 8, where vlol , v

up
l are the values of vlo, vup associated with the ψC

α p
?
nlβ̂nl

, A,
?
nld,

?
nlθ

ub
Pl

`

x, Σ̂nl
q test. Since η̂l is stochastically bounded, and by construction vlol ď η̂l ď vupl , it follows

that vlol Ñp ´8 and vupl Ñp 8. Let σ̂2
l “ γ1

˚,lAΣ̂nl
A1γ˚,l denote the variance at the optimal

vertex used by the ψC
α p

?
nlβ̂nl

, A,
?
nld,

?
nlθ

ub
Pl

` x, Σ̂nl
q test. Since, we’ve shown that γ̂˚

l is
optimal w.p.a. 1, we have that σ̂2

l Ñp c1pΣ
˚q2γ̄1

1AΣ
˚A1γ̄1. From another application of the
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continuous mapping theorem, we have that

Φpη̂l{σ̂lq ´ Φpvlol {σ̂lq

Φpvupl {σ̂lq ´ Φpvlol {σ̂lq
Ñd

Φpξq ´ Φp´8q

Φp8q ´ Φp´8q
“ Φpξq,

where ξ „ N
´

´γ̄1
1Ãp¨,1qx{

a

γ̄1
1AΣ

˚Aγ̄1, 1
¯

. The limiting distribution is continuous, and
thus

PPl

ˆ

Φpη̂l{σ̂lq ´ Φpvlol {σ̂lq

Φpvupl {σ̂lq ´ Φpvlol {σ̂lq
ą 1 ´ α

˙

Ñ P pΦpξq ą 1 ´ αq “ Φ

˜

´γ̄1Ãp¨,1qx
?
γ̄1AΣ˚A1γ̄1

´ z1´α

¸

.

Moreover, for α ă 0.5, zlo sufficiently small, and zup sufficiently large, pΦpη̂lq´Φpzloqq{pΦpzupq´

Φpzloqq ą 1 ´ α only if η̂l ą 0. It follows that

PPl

ˆ

Φpη̂l{σ̂lq ´ Φpvlol {σ̂lq

Φpvupl {σ̂lq ´ Φpvlol {σ̂lq
ą 1 ´ α, η̂l ą 0

˙

Ñ Φ

˜

´γ̄1Ãp¨,1qx
?
γ̄1AΣ˚A1γ̄1

´ z1´α

¸

.

However, the event in the previous display is precisely the event that ψC
α p

?
nlβ̂l, A,

?
nld,

?
nlθ

ub
P `

x, Σ̂nl
q “ 1, and thus

EPl

”

ψC
α p

?
nlβ̂l, A,

?
nld,

?
nlθ

ub
P ` x, Σ̂nl

q

ı

Ñ Φ

˜

´γ̄1Ãp¨,1qx
?
γ̄1AΣ˚A1γ̄1

´ z1´α

¸

.

The result is then immediate from the previous display combined with (24).

Lemma A.4. If LICQ holds in direction l at βP , then there exists a unique γ̄ P V pΣP q such
that γ̄´B˚ “ 0, where B˚ is the set of binding moments at the optimum to (16).

Proof. We first show that there is at most one such γ̄. By definition, any vertex γ P V pΣP q

satisfies γ1Ãp¨,´1q “ 0. Recall that Ã “ Ap¨,postqΓ
´1, where Γ is full rank. LICQ implies that

ApB˚,postq has full row rank, and thus so does ÃpB˚,¨q. It follows that ÃpB˚,´1q has rank at
least |B˚| ´ 1. If the rank is |B˚|, then there are no non-zero solutions to γ1

B˚ÃpB˚,´1q “ 0,
and thus there are no vertices with γ´B˚ “ 0. If the rank is |B˚| ´ 1, then any solution to
γ1Ãp¨,´1q “ 0 with γ´B˚ “ 0 takes the form γB˚ “ c ¨ ν for some constant c and ν a vector
the generates the one-dimensional nullspace of ÃpB˚,´1q. However, any γ P V pΣP q also must
satisfy γ1σ̃ “ 1, which uniquely pins down the constant c. Thus, there is at most one element
of the feasible set with γ´B˚ “ 0.

We next show that there exists such a γ̄. Consider the optimization ηpβP , A, d, θ
ub
P ,ΣP q for

ηp¨q defined in (21). As argued in the proof to Proposition 3.2, since θubP is on the boundary
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of the identified set, we must have ηpβP , A, d, θ
ub
P ,ΣP q “ 0. However, LICQ implies that

there exists a value τ̃˚ such that

ApB˚,¨qβP ´ dB˚ ´ ÃpB˚,1qθ
ub
P ´ ÃpB˚,´1qτ̃

˚
“ 0

Ap´B˚,¨qβP ´ d´B˚ ´ Ãp´B˚,1qθ
ub
P ´ Ãp´B˚,1qτ̃

˚
ă 0.

In particular, this holds for τ̃˚ “ Γp´1,¨qτ
˚. It follows that pη, τ̃q “ p0, τ̃˚q is a solution to

ηpβP , A, d, θ
ub
P ,ΣP q. By duality, there is some γ̄ P V pΣP q that is a Lagrange multiplier for

this optimization problem. The complementary slackness conditions imply, however, that
γ̄´B˚ “ 0, as needed.

Lemma A.5. Suppose β̂ „ N pβ, Σq for Σ known. Let B0 be a closed, convex set. Then
the most-powerful size α test of H0 : β P B0 against the point alternative HA : β “ βA

is equivalent to the most powerful test of H0 : β “ β̃ against HA : β “ βA, where β̃ “

argminβPB0
||β´βA||Σ and || ¨ ||Σ is the Mahalanobis norm in Σ, ||x||Σ “

?
x1Σ´1x. The most

powerful test rejects for values of pβA´ β̃q1Σ´1β̂ greater than pβA´ β̃q1Σ´1β̃`z1´α||βA´ β̃||Σ,
and has power against the alternative of Φp||βA ´ β̃||Σ ´ z1´αq, for z1´α the 1 ´ α quantile
of the standard normal.

Proof. Define ă ¨, ¨ ąΣ by ă x, y ąΣ“ x1Σ´1y, and observe that ă ¨, ¨ ąΣ is an inner product.
The result then follows immediately from the discussion in Section 2.4.3 of Ingster and Suslina
(2003), replacing all instances of the usual euclidean inner product with ă ¨, ¨ ąΣ.

Lemma A.6. Let B be a closed, convex subset of RK, and βA R B. Let β̃ “ argminβPB ||β´

βA||Σ, where ||x||2Σ “ x1Σ´1x for some positive definite matrix Σ. Then for any β P B,
pβ̃ ´ βAq1Σ´1pβ ´ β̃q ě 0.

Proof. Consider any β P B. Define βθ “ θpβ´ β̃q ` β̃, and note that since B is convex βθ P B
for any θ P r0, 1s. Further,

||βθ ´ βA||
2
Σ “ θ2||β ´ β̃||

2
Σ ` 2θpβ̃ ´ βAq

1Σ´1
pβ ´ β̃q ` ||β̃ ´ βA||

2
Σ.

Differentiating with respect to θ, we have

B

Bθ
||βθ ´ βA||

2
Σ “ 2θ||β ´ β̃||

2
Σ ` 2pβ̃ ´ βAq

1Σ´1
pβ ´ β̃q,

from which we see that the derivative evaluated at θ “ 0 is 2pβ̃ ´ βAq1Σ´1pβA ´ β̃q. Since β̃
minimizes the norm, it follows that we must have 2pβ̃ ´ βAq1Σ´1pβA ´ β̃q ě 0, else we could
achieve a lower value of the norm at βθ by choosing θ ą 0 sufficiently small.
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Lemma A.7. Let B “ tβ P RK : v1β ď du for some v P RKzt0u and d P R. Let
β̃ “ argminβPB ||β´βA||Σ for some βA R B, where ||x||2Σ “ x1Σ´1x and Σ is positive definite.
Then pβA ´ β̃q1Σ´1 “ c ¨ v1 for the positive constant c “

v1βA´d
v1Σv

.

Proof. Note that we can form a basis v, ṽ2, ..., ṽK such that v1ṽj “ 0 for j “ 2, ..., K. It
follows by construction that for any j “ 2, .., K and any t P R, β̃ ` t ¨ ṽj P B. Hence, from
Lemma A.6, ´pβA ´ β̃q1Σ´1ptṽjq ě 0. Since we can choose t both positive and negative, it
follows that pβA ´ β̃q1Σ´1ṽj “ 0 for all j. Since pβA ´ β̃q1Σ´1 is orthogonal to tṽ2, ..., ṽKu, and
tv, ṽ2, ..., ṽKu form a basis, we have that pβA ´ β̃q1Σ´1 “ c ¨ v1, for some c P R. Multiplying
both sides of the equation on the right by Σv, we obtain that pβA ´ β̃q1v “ c ¨v1Σv. However,
since β̃ is the closest point to βA in Mahalanobis distance, it must be on the boundary of B,
and so v1β̃ “ d. It follows that c “ pv1βA ´ dq{pv1Σvq, which is clearly positive since βA R B
and thus v1βA ą d.

Lemma A.8 (Power of optimal test for linear subspace). Let B “ tβ P RK : v1β ď du

for some v P RKzt0u and d P R. Suppose β̂ „ N pβ, Σq for Σ positive definite known, and
consider the problem of testing H0 : β P B against HA : β “ βA for some βA R B. Then the
most powerful size-α test of H0 against HA is a one-sided t-test that rejects for large values
of v1β̂, and has power equal to Φppv1βA ´ dq{

?
v1Σv ´ z1´αq.

Proof. From Lemma A.5, the most powerful test rejects for large values of pβA ´ β̃q1Σ´1β̂,
where β̃ “ argminβPB ||β ´ βA||Σ, and has power Φp||βA ´ β̃||Σ ´ z1´αq. By Lemma A.7,
pβA ´ β̃q1Σ´1 “ cv1, for c “ pv1βA ´ dq{pv1Σvq. It follows that

||βA ´ β̃||
2
Σ “ pβA ´ β̃q

1Σ´1
pβA ´ β̃q

“ cv1
pβA ´ β̃q

“ cpv1βA ´ dq “ pv1βA ´ dq
2
{pv1Σvq,

where we use the fact that v1β̃ “ d, since β̃ must be on the boundary of B, as argued in the
proof to Lemma A.7. The result then follows immediately.

Lemma A.9. If P P Pϵ, then ρ˚
αpP, xq “ Φ

˜

´γ̄1Ãp¨,1qx
?
γ̄1AΣPA1γ̄

´ z1´α

¸

, where γ̄ P V pΣP q is the

unique element of V pΣP q with γ̄´B˚ “ 0 (see Lemma A.4).

Proof. Suppose β̂n „ N pβP , ΣP {nq. Let Bn “ tβ : θubP `x{
?
n P Spβ,∆qu be the set of values

for β consistent with the null that θ “ θubP ` x{
?
n. Observe that Bn “ tβ : ηpβ,A, d, θub `

x{
?
n,ΣP q ď 0u, where ηp¨q is defined in (21). From Lemma A.5, the most powerful test of

H0 : β P Bn against H1 : β “ βP rejects for large values of pβP ´ β̃q1Σ´1
P β̂n. To derive the
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optimal test, it is instructive to first consider a simpler testing problem. From Lemma A.4,
there exists a unique γ̄ P V pΣP q such that γ̄´B˚ “ 0, where B˚ are the binding rows at the
solution to (16) satisfying LICQ. Define Bγ̄

n “ tβ : γ̄1pAβ´d´ Ãp¨,1qpθ
ub
P `x{

?
nqq ď 0u. We

first consider testing H̃0 : β P Bγ̄
n against H1 : β “ βP . From Lemma A.7, the optimal test

rejects for large values of γ̄1Aβ̂n and has power Φp h?
γ̄1AΣPA1γ̄{n

´ z1´αq, where

h “ γ̄1
pAβP ´ d ´ Ãp¨,1qpθ

ub
P ` x{

?
nqq. (25)

From the definition of LICQ in direction l, however, there exists a value τ̃˚ such that

ApB˚,¨qβP ´ dB˚ ´ ÃpB,1qθ
ub
P ´ ÃpB,´1qτ̃

˚
“ 0 (26)

Ap´B˚,¨qβP ´ d´B˚ ´ Ãp´B,1qθ
ub
P ´ Ãp´B,1qτ̃

˚
ă 0 (27)

By construction, γ̄1Ãp¨,´1q “ 0 and γ̄´B˚ “ 0, which combined with the previous two dis-
plays implies that h “ ´γ̄1Ãp¨,1qx{

?
n, and hence the power of the optimal test of H̃0 is

Φ

˜

´γ̄1Ãp¨,1qx
?
γ̄1AΣPA1γ̄

´ z1´α

¸

.

To complete the proof, it thus suffices to show that the optimal test of H̃0 against H1 is
the same as the optimal test of H0 against H1 for n sufficiently large. To this end, note that
Bn Ď Bγ̄

n, since by duality,

ηpβ,A, d, θub`x{
?
n,ΣP q “ max

γPV pΣP q
γ1

pAβ´d´Ãp¨,1qpθ
ub
P `x{

?
nqq ě γ̄1

pAβ´d´Ãp¨,1qpθ
ub
P `x{

?
nqq.

Thus, Lemma A.5 implies that the optimal test under H0 coincides with the optimal test
under H1 whenever β̃n “ argminβPBγ̄

n
||β ´ βP ||ΣP {n is in Bn. From Lemma A.7, however,

β̃1
n “ β1

P ` h?
γ̄1AΣPA1γ̄{n

v1pΣP {nq, for h defined in (25). Using the equality h “ ´γ̄1Ãp¨,1qx{
?
n

derived above, we see that

β̃1
n “ β1

P ´
1

?
n

γ̄1Ãp¨,1qx
?
γ̄1AΣPA1γ̄

γ̄1AΣP ,

and thus we can write β̃ “ βP ´ ν{
?
n for a finite vector ν. From Lemma A.4, every

γ P V pΣP q with γ ‰ γ̄ has γ´B˚ ‰ 0. Since γ ě 0 by construction, equations (26) and (27)
imply that

γ1
pAβP ´ d ´ Ãp¨,1qθ

ub
P q ă 0

for all γ ‰ γ̄, where we use the fact that γ1Ãp¨,´1q “ 0 by construction. We’ve shown,
however, that γ̄1pAβP ´ d ´ Ãp¨,1qθ

ub
P q “ 0. By continuity arguments, it follows that for n
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sufficiently large,

ηpβ̃, A, d, θubP ` x{
?
n,ΣP q “ max

γPV pΣP q
γ1

pApβP ´ ν{
?
nq ´ d ´ Ãp¨,1qpθ

ub
P ` x{

?
nqq

is equal to
γ̄1

pApβP ´ ν{
?
n ´ d ´ Ãp¨,1qpθ

ub
P ` x{

?
nqq,

and thus β̃n P Bn, as we wished to show.

A.3 Proofs and auxiliary lemmas for FLCIs

Proof of Proposition 4.2

Proof. First, suppose Assumption 9 holds. Without loss of generality, we show P
`

pθub ` xq P CFLCI
α,n

˘

Ñ

0 for any x ą 0. By Lemma A.11 there exists pā, v̄q such that b̄pā, v̄q “ 1
2
LIDpδpre,∆q “: b̄min

and Eβ̂n„N pδ`τ,Σnq

”

ā ` v̄1β̂n

ı

“ 1
2
pθub ` θlbq “: θmid. Let C̄n :“ ā` v̄1β̂n ˘χnpā, v̄q denote the

fixed length confidence interval based on pā, v̄q.
By construction, χ̄n :“ χnpā, v̄q is the 1´α quantile of the |N

`

b̄min, σ
2
v̄,n

˘

| distribution.
Since σ2

v̄,n “ 1
n
σ2
v̄,1 Ñ 0, the |N

`

b̄min, σ
2
v̄,n

˘

| distribution collapses to a point mass at b̄min,
and thus χ̄n Ñ b̄min. By construction, the half-length of the shortest FLCI χn :“ χnpan, vnq

must be less than or equal to χ̄n, and so lim supnÑ8 χn ď b̄min. Let bn :“ b̄pan, vnq be the
worst-case bias of the optimal FLCI. Since α P p0, 0.5s, Lemma A.12 implies that χn ě bn.
Additionally, Lemma A.10 implies that bn ě 1

2
LIDpδpre,∆q “ b̄min, and thus χn ě b̄min.

Hence, χn Ñ b̄min implies bn Ñ b̄min. Additionally, note that for α P p0, 0.5s, χnpa, vq is
increasing in both b̄pa, vq and σv,n. Since b̄min ď bn and χn ď χ̄n, it must be that σvn,n ď σv̄,n,
from which it follows that σvn,n Ñ 0.

Now, we claim that µn :“ Eβ̂n„N pδ`τ,Σnq

”

an ` v1
nβ̂n

ı

converges to θmid :“ 1
2
pθub ` θlbq.

To show this, note that µn “ an ` v1
nβ for β “ δ ` τ . Since θub, θlb P Spβ,∆q, by the

definition of the identified set there exist δub, δlb P ∆ and τub, τ lb such that β “ δub ` τub “

δlb ` τ lb, θub “ l1τubpost, and θlb “ l1τ lbpost. Thus, θub ´ Eβ̂n„N pβ,Σnq

”

an ` v1
nβ̂n

ı

“ θub ´ µn and

Eβ̂n„N pβ,Σnq

”

an ` v1
nβ̂n

ı

´ θlb “ µn ´ θlb. This implies that bn ě maxtθub ´ µn, µn ´ θlbu “

b̄min ` |µn ´ θmid|, where the equality uses the fact that θub ´ θlb “ LIDpδA,pre,∆q “ 2b̄min.
Since we’ve shown that bn Ñ b̄min, it follows that µn Ñ θmid, as desired.

Next, note that if β̂n „ N pδ ` τ, Σnq, then an ` v1
nβ̂n „ N

`

µn, σ
2
vn,n

˘

. Observe that
θ̄ P CFLCI

α,n if and only if an ` v1
nβ̂n P rθ̄ ´ χn, θ̄ ` χns. Thus,
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Pβ̂n„N pβ,Σnq

`

θ̄ P CFLCI
α,n

˘

“ Φ

ˆ

θ̄ ` χn ´ µn

σvn,n

˙

´ Φ

ˆ

θ̄ ´ χn ´ µn

σvn,n

˙

.

Now, recalling that θub “ θmid`b̄min by construction, we have Pβ̂n„N pβ,Σnq

`

pθub ` xq P CFLCI
α,n

˘

equals

Φ

ˆ

θmid ` b̄min ` x ` χn ´ µn

σvn,n

˙

´ Φ

ˆ

θmid ` b̄min ` x ´ χn ´ µn

σvn,n

˙

. (28)

Note that the term inside the second normal CDF in the previous display equals

´
χn ´ bn
σvn,n

`
x ` θmid ´ µn ` b̄min ´ bn

σvn,n
.

However, the first summand above is bounded between ´z1´α{2 and ´z1´α by Lemma A.12.
Additionally, we’ve shown that θmid ´ µn Ñ 0 and b̄min ´ bn Ñ 0, so the numerator of the
second summand converges to x ą 0. Since the denominator σvn,n Ñ 0, the expression in the
previous display diverges to 8, and hence the second normal CDF term in (28) converges to
1, which implies that P

`

pθub ` xq P CFLCI
α,n

˘

Ñ 0, as needed.
In order to prove the other direction, we proceed via the contrapositive. Towards this,

suppose Assumption 9 fails. Let L :“ LIDpδpre,∆q and L̄ :“ supδ̃preP∆pre
LIDpδ̃pre,∆q. By

Lemma A.10, bn :“ b̄pan, vnq ě 1
2
L̄ “: b̄min. As argued earlier in the proof, since α P p0, .5s,

χn ě bn ě 1
2
L̄. If L̄ “ 8, then CFLCI

α,n is the real line, and thus never rejects, so CFLCI
α,n

is trivially inconsistent under the assumption that Spδ ` τ,∆q ‰ R. For the remainder
of the proof, we assume L ă L̄ ă 8. From Lemma 2.1, Spδ ` τ,∆q “ rθlb, θubs, where
θub ´ θlb “ LIDpδpre,∆q “ L. Let ϵ “ 1

4
pL̄ ´ Lq, and set θout1 :“ θub ` ϵ and θout2 :“ θlb ´ ϵ.

Let θmid “ 1
2
pθub ` θlbq be the midpoint of the identified set. By construction, θout1 ´ θmid “

θmid ´ θout2 “ 1
2
L` ϵ ă 1

2
L̄. Since CFLCI

α,n is an interval with half-length at least 1
2
L̄, it follows

that if θmid P CFLCI
α,n then at least one of θout1 , θout2 is also in CFLCI

α,n . Hence, P
`

θout1 P CFLCI
α,n

˘

`

P
`

θout2 P CFLCI
α,n

˘

ě P
`

θmid P CFLCI
α,n

˘

ě 1 ´ α, where the final bound follows since CFLCI
α,n

satisfies the coverage requirement (10). It follows that lim supnÑ8 P
`

θoutj P CFLCI
α,n

˘

ě 1
2
p1 ´

αq ą 0 for at least one j P t1, 2u.

Lemma A.10 (Bounds for worst-case bias). For any pa, vq, b̄pa, vq ě 1
2
supδpreP∆pre

LIDpδpre,∆q.

Proof. Since β “ δ ` τ , we can write the bias of the affine estimator a ` v1β̂ as b “ a `

v1δ ` pvpost ´ lq1τpost. Since τpost is unrestricted in the maximization in (17), we see that the
worst-case bias will be infinite if vpost ‰ l and the lemma holds trivially. We can thus restrict
attention to affine estimators with vpost “ l, in which case the worst-case bias reduces to

b̄pa, vq “ sup
δP∆

|a ` v1δ| “ sup
δP∆

|a ` v1
preδpre ` l1δpost|. (29)
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Now, pick any δ˚
pre P ∆pre. First, suppose that the minimum

`

minδ l
1δpost, s.t. δ P ∆, δpre “ δ˚

pre

˘

and the maximum
`

maxδ l
1δpost, s.t. δ P ∆, δpre “ δ˚

pre

˘

are finite. Let δmin and δmax be the
associated solutions. By construction, δmax

pre “ δmin
pre “ δ˚

pre. For any vpre, we can apply the
triangle inequality to show that

ˇ

ˇa ` v1
preδ

max
pre ` l1δmax

post

ˇ

ˇ `
ˇ

ˇa ` v1
preδ

min
pre ` l1δmin

post

ˇ

ˇ ě
ˇ

ˇ

`

a ` v1
preδ

max
pre ` l1δmax

post

˘

´
`

a ` v1
preδ

min
pre ` l1δmin

post

˘
ˇ

ˇ

“ |l1δmax
post ´ l1δmin

post | “ LIDpδ˚
pre,∆q.

Note that for any x1, x2 ě 0, maxtx1, x2u ě 1
2
px1 ` x2q. It then follows from the previous

display that

maxt
ˇ

ˇa ` v1
preδ

max
pre ` l1δmax

post

ˇ

ˇ ,
ˇ

ˇa ` v1
preδ

min
pre ` l1δmin

post

ˇ

ˇu ě
1

2
LIDpδ˚

pre,∆q.

Since δmax
pre and δmin

pre are feasible in the maximization (29), we see that b̄ ě 1
2
LIDpδ˚

pre,∆q,
as needed. To complete the proof, now suppose without loss of generality that

´

max
δ
l1δpost, s.t. δ P ∆, δpre “ δ˚

pre

¯

“ 8.

Then, we can replay the argument above replacing δmax with a sequence of values tδju such
that l1δj diverges, which gives that b̄ is infinite and the result follows.

Lemma A.11. Suppose ∆ is convex, and there exists δ P ∆ such that LIDpδpre,∆q “

supδ̃preP∆pre
LIDpδ̃pre,∆q ă 8. Then there exists pa, vq such that b̄pa, vq “ 1

2
supδ̃preP∆pre

LIDpδ̃pre,∆q.

Additionally, for any τ and Σn, Eβ̂n„N pδ`τ,Σnq

”

a ` v1β̂n

ı

“ 1
2
pθub ` θlbq, where θub and θlb

are the upper and lower bounds of the identified set Spδ ` τ,∆q.

Proof. Let bmaxpδ˚
preq :“

´

maxδ̃ l
1δ̃post, s.t. δ̃ P ∆, δ̃pre “ δ˚

pre

¯

, where we define bmax “ ´8

if δ˚
pre R ∆pre. Likewise, define bminpδ˚

preq :“
´

minδ̃ l
1δ̃post, s.t. δ̃ P ∆, δ̃pre “ δ˚

pre

¯

, where
we define bmin “ 8 if δ˚

pre R ∆pre. Note that ∆ convex implies that bmax is concave and
bmin is convex. Thus, ´LIDpδ˚

preq “ bminpδ˚
preq ´ bmaxpδ˚

preq is convex (where we define
LIDpδ˚

preq “ ´8 if δ˚
pre R ∆pre). The domain of ´LIDpδ˚

preq (i.e. the set of values for which
it is finite) is ∆pre, since it is infinite for δ˚

pre R ∆pre by construction, and by assumption,
LIDpδ˚

preq is finite for all δ˚
pre P ∆pre. Since ∆ is assumed to be convex, ∆pre is a non-

empty convex set, and thus has non-empty relative interior, so the relative interior of the
domain of ´LID is non-empty.41 It follows from Theorem 8.2 in Mau Nam (2019) that
Bp´LIDq “ Bp´bmaxq ` Bpbminq where for a convex function f , Bf is the subdifferential

41The relative interior of a set is the interior of the set relative to its affine hull. See, e.g., Mau Nam
(2019), Chapter 5.

A-16



Bfpx̄q :“ tv : fpx̄q ` v1px´ x̄q ď fpxq, @xu and Bp´bmaxq ` Bpbminq is the Minkowski sum of
the two subdifferentials.

Additionally, if LIDpδpreq “ supδ̃preP∆pre
LIDpδ̃preq, then ´LIDpδpreq “ inf δ̃preP∆pre

´LIDpδ̃preq.
Thus, standard results in convex analysis (see, e.g., Theorem 16.2 in Mau Nam (2019)) give
that 0 P Bp´LIDqpδpreq `Np∆; δpreq, where Np∆; δpreq “ tvpre : v1

prepδ̃pre ´ δpreq ď 0, @δ̃pre P

∆preu is the normal cone to ∆pre at δpre. Hence, there exist vectors v̄min, v̄max such that for
all δ̃pre P ∆pre,

bmin
pδpreq ` v̄1

minpδ̃pre ´ δpreq ď bmin
pδ̃preq (30)

´ bmax
pδpreq ` v̄1

maxpδ̃pre ´ δpreq ď ´bmax
pδ̃preq (31)

´ pv̄min ` v̄maxq
1
pδ̃pre ´ δpreq ď 0. (32)

The inequalities (31) and (32) together imply that for all δ̃pre P ∆pre,

bmax
pδpreq ` v̄1

minpδ̃pre ´ δpreq ě bmax
pδ̃preq. (33)

Now, let v be the vector such that vpost “ l and vpre “ ´v̄min. Observe that

max
δ̃P∆

a ` v1
preδ̃pre ` l1δ̃post “ max

δ̃preP∆pre

ˆ

a ` v1
preδ̃pre ` max

δ̄P∆,δ̄pre“δ̃pre

l1δ̄post

˙

“ max
δ̃preP∆pre

a ` v1
preδ̃pre ` bmax

pδ̃preq

ď a ` v1
preδpre ` bmax

pδpreq, (34)

where the first equality nests the maximization, the second equality uses the definition of
bmax, and the inequality follows from (33). An analogous argument using (30) yields that

min
δ̃P∆

a ` v1
preδ̃pre ` l1δ̃post “ min

δ̃preP∆pre

a ` v1
preδ̃pre ` bmin

pδ̃preq

ě a ` v1
preδpre ` bmin

pδpreq. (35)

Now, it is apparent from equation (29) that

b̄pa, vq “ max

"
ˇ

ˇ

ˇ

ˇ

max
δ̃P∆

a ` v1
preδ̃pre ` l1δ̃post

ˇ

ˇ

ˇ

ˇ

,

ˇ

ˇ

ˇ

ˇ

min
δ̃P∆

a ` v1
preδ̃pre ` l1δ̃post

ˇ

ˇ

ˇ

ˇ

*

, (36)

which is bounded above by max
␣

a ` v1
preδpre ` bmaxpδpreq,´pa ` v1

preδpre ` bminpδpreq
˘

u from
the results above. Setting a “ ´v1

preδpre ´ 1
2
pbmaxpδpreq ` bminpδpreqq, this upper bound

reduces to 1
2
pbmaxpδpreq ´ bminpδpreqq. Since LIDpδpre,∆q “ bmaxpδpreq ´ bminpδpreq and
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LIDpδpre,∆q “ supδ̃preP∆pre
LIDpδ̃pre,∆q by assumption, it is then immediate that b̄ ď

1
2
supδ̃preP∆pre

LIDpδ̃pre,∆q. The inequality in the opposite direction follows from Lemma
A.10. Finally, substituting in the definition of a and v above and simplifying, we see that
Eβ̂n„N pδ`τ,Σnq

”

a ` v1β̂n

ı

“ l1βpost ´ 1
2
pbmaxpδpreq ` bminpδpreqq, which from (5) and (6) we see

is the midpoint of the identified set.

Lemma A.12. Let χα be the 1 ´ α quantile of the |N pb, σ2q | distribution for b ě 0. Then
b ` σz1´α ď χα ď b ` σz1´α{2.

Proof. Since |ξ| ě ξ, we have that q1´αp|ξ| | ξ „ N pb, σ2qq ě q1´αpξ | ξ „ N pb, σ2qq “

b ` σz1´α, which yields the first inequality. For the second inequality, observe that

q1´αp|ξ| | ξ „ N
`

b, σ2
˘

q “ q1´αp|ξ ` b| | ξ „ N
`

0, σ2
˘

q

ď b ` q1´αp|ξ| | ξ „ N
`

0, σ2
˘

q “ b ` σz1´α{2

where the first inequality uses the triangle inequality, and the final equality uses the fact
that a mean-zero normal distribution is symmetric about 0.

B Additional Simulation Results

This section contains additional simulation results that complement the simulations pre-
sented in the main text. Section B.1 describes the computation of the optimal bound for ex-
pected excess length. Section B.2 contains additional results from the normal data-generating
process considered in the main text. Section B.3 presents results from a non-normal data-
generating process in which the covariance matrix is estimated from the data, which show
that our proposed procedures have (approximate) size control, with similar power curves to
those in the normal simulations.

B.1 Optimal bounds on excess length

We now discuss the computation of optimal bounds on the excess length of confidence in-
tervals that satisfy the uniform coverage requirement (10). In Section 5, we benchmark the
performance of our proposed procedures in Monte Carlo simulations relative to these bounds.

The following result restates Theorem 3.2 of Armstrong and Kolesár (2018) in the nota-
tion of our paper, which provides a formula for the optimal expected length of a confidence
set that satisfies the uniform coverage requirement.
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Lemma B.1. Suppose that ∆ is convex. Let Iα denote the set of confidence sets that satisfy
the coverage requirement (10). Then, for any δ˚ P ∆, τ˚

post P RT̄ , and Σn positive definite,

inf
CPIα

Eβ̂n„N pδ˚`Lpostτ˚,Σnq
rλpCqs “ p1 ´ αqE rω̄pz1´α ´ Zq ´

¯
ωpz1´α ´ Zq |Z ă z1´αs ,

where Z „ N p0, 1q, z1´α is the 1 ´ α quantile of Z, and

ω̄pbq :“ suptl1τ | τ P RT̄ , Dδ P ∆ s.t. }δ ` Lpostτ ´ β˚
}
2
Σn

ď b2u

¯
ωpbq :“ inftl1τ | τ P RT̄ , Dδ P ∆ s.t. }δ ` Lpostτ ´ β˚

}
2
Σn

ď b2u,

for β˚ :“ δ˚ ` Lpostτ
˚
post, and ||x||Σ “ x1Σ´1x.

The proof of this result follows from observing that the confidence set that optimally
directs power against pδ˚, τ˚

postq inverts Neyman-Pearson tests of H0 : δ P ∆, θ “ θ̄ against
HA : pδ, τpostq “ pδ˚, τ˚

postq for each value θ̄. The formulas above are then obtained by
integrating one minus the power function of these tests over θ̄. By the same argument, the
optimal excess length for confidence sets that control size is the integral of one minus the
power function over all points θ̄ outside of the identified set. Additionally, for any value
θ̄ P Spβ,∆q, the null and alternative hypotheses are observationally equivalent, and so the
most powerful test trivially has size α. It follows that the lowest achievable expected excess
length is p1´αq ¨LIDpδ˚

pre,∆q shorter than the lowest achievable expected length, where as
in Section 4, LID denotes the length of the identified set.

Corollary B.1. Under the conditions of Lemma B.1,

inf
CPIα

Eβ̂n„N pβ˚,Σnq
rELpC; β˚

qs “ inf
CPIα

Eβ̂n„N pβ˚,Σnq
rλpCqs ´ p1 ´ αqLIDpβ˚,∆q,

where ELpC; βq “ λpCzSpβ,∆qq is the excess length of the confidence set C, i.e. the length
of the part of the confidence set that falls outside of the identified set.

Recall that when ∆ is the union of polyhedra (∆ “
ŤK

k“1∆k), the identified set is the
union of the identified sets for each of the ∆k. Thus, any Cα that satisfies (10) for ∆ must
also satisfy (10) for each ∆k. It follows that the expected excess length for C is bounded
below by the optimal excess length for confidence sets satisfying (10) for ∆k for each k.
For ∆s that are unions of polyhedra, we therefore use the largest lower bound implied by
the individual ∆k, which is a potentially non-sharp lower bound on the excess length of a
procedure that satisfies (10) for ∆.
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B.2 Additional Results for Normal Simulations

In the main text, we report efficiency in terms of excess length for the parameter θ “ τ1

for ∆SDpMq, ∆SDPBpMq, ∆SDRMpM̄q and ∆RMpM̄q. In this section, we provide additional
simulation results.

Alternative choices of M̄ for ∆SDRMpM̄q and ∆RMpM̄q. The main text reports effi-
ciency in terms of excess length over ∆SDRMpM̄q and ∆RMpM̄q for M̄ “ 1. We now report
additional results for M̄ “ 1, 2, 3. The results are qualitatively similarly, suggesting that
the choice of M̄ does not appear to have a large effect on the performance of our proposed
procedures.

Figure I1: ∆SDRMpM̄q and ∆RMpM̄q: Median efficiency ratios for proposed procedures when
θ “ τ1 as M̄ varies.

Note: This figure shows the median efficiency ratio for our proposed confidence sets for θ “ τ1 over
∆SDRM pM̄q, ∆RM pM̄q and M̄ “ 1, 2, 3. The efficiency ratio for a procedure is defined as the excess length
bound divided by the procedure’s expected excess length. The results for M̄ “ 1 are plotted in red, M̄ “ 2
are plotted in blue, and M̄ “ 3 are plotted in green. The results for the conditional-least favorable hybrid
confidence set (“C-LF Hybrid”) are plotted in the solid line with circles. The results for the conditional
confidence set are plotted in the dashed line with triangles. Results are averaged over 1000 simulations for
each of the 12 papers surveyed, and the median across papers is reported here.

Alternative choice of target parameter. The main text reports efficiency in terms of
excess length for the parameter θ “ τ1. We now report additional results using the average
of post-period treatment effects, θ “ τ̄post, as the target parameter.

Figure I2 plots the efficiency results for θ “ τ̄post over ∆SDpMq and ∆SDPBpMq. As in
the main text, we conduct these simulations under the assumption of parallel trends and
zero treatment effects (i.e., β “ 0), reporting results as M{σ1 varies.
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Figure I2: Median efficiency ratios for ∆SDpMq and ∆SDPBpMq when θ “ τ̄post.

Note: This figure shows the median efficiency ratios for our proposed confidence sets for ∆SDpMq and
∆SDPBpMq when θ “ τ̄post. The efficiency ratio for a procedure is defined as the optimal bound divided
by the procedure’s expected excess length. The results for the FLCI are plotted in purple, the results for
the conditional-LF (“C-LF Hybrid”) in blue, and the results for the conditional confidence set are in green.
Results are averaged over 1000 simulations for each of the 12 papers surveyed, and the median across papers
is reported here.

Figure I3 plots the efficiency results for θ “ τ̄post over ∆SDRMpM̄q and ∆RMpM̄q. As in
the main text, we conduct these simulations under the assumption of zero treatment effects
and a “pulse” pre-trend (i.e., β´1 “ δ´1 and βt “ 0 for all t ‰ ´1), reporting results for
M̄ “ 1 over δ´1{σ1 “ 0, 1, 2, 3.42

42We note that over ∆SDRM pM̄q the median efficiency ratio for our proposed confidence sets is larger than
one for M̄ “ 3. For M̄ “ 3, the length of the identified set for θ “ τ̄post can be quite large when there are
many post-treatment periods (e.g., as mentioned in the main text, 5 papers in the survey have T̄ ą 10), and
so this behavior occurs due to computational constraints on the grid size for the underlying test inversion.
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Figure I3: Median efficiency ratios for ∆SDRMpM̄q and ∆RMpM̄q when θ “ τ̄post.

Note: This figure shows the median efficiency ratios for our proposed confidence sets for ∆SDRM pM̄q and
∆RM pM̄q when θ “ τ̄post and M̄ “ 1. The efficiency ratio for a procedure is defined as the optimal bound
divided by the procedure’s expected excess length. The results for the conditional-least favorable (“C-LF”)
hybrid in blue and the results for the conditional confidence set in green. Results are averaged over 1000
simulations for each of the 12 papers surveyed, and the median across papers is reported here.
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B.3 Non-normal simulation results with estimated covariance ma-

trix

In the main text, we presented simulations results where β̂ is normally distributed and its
covariance matrix is treated as known. In this section, we present Monte Carlo results using
a data-generating process in which β̂ is not normally distributed and the covariance matrix
is estimated from the data. Specifically, we consider simulations based on the empirical
distribution in Bailey and Goodman-Bacon (2015). We find that all of our procedures achieve
(approximate) size control, and our results on the relative power of the various procedures
are quite similar to those presented in the main text.

B.3.1 Simulation design

The simulations are calibrated using the empirical distribution of the data in Bailey and
Goodman-Bacon (2015).43 Let β̂, Σ̂ denote the original, estimated event-study coefficients
and variance-covariance matrix from the event-study regression in the paper. We simulate
data using a clustered bootstrap sampling scheme at the county level (i.e. the level of
clustering used by the authors in their event-study regression). For each bootstrap sample
b, we re-estimate the event-study coefficients β̂b and the variance-covariance matrix Σ̂b also
using the clustering scheme specified by the authors. We then re-center the bootstrapped
coefficient so that under our simulated data-generating process either parallel trends holds
(i.e., β̂centered

b “ β̂b ´ β̂) or the “pulse” pre-trend holds (i.e., β̂centered
b “ β̂b ´ β̂`δ´1 ˚e´1 where

e´1 is the (
¯
T ` T̄ )-dimensional vector with one in t “ ´1 entry and zeroes everywhere else).

We construct our proposed confidence sets for bootstrap draw b using the pair pβ̂centered
b , Σ̂bq.

As in the main text, we focus on the performance of our proposed confidence sets for
∆SDpMq, ∆SDPBpMq under parallel trends and ∆SDRMpM̄q, ∆RMpM̄q under the “pulse”
pre-trend. The parameter of interest in these simulations is the causal effect in the first post-
period (θ “ τ1). For ∆SDpMq and ∆SDPBpMq, we report the performance of the FLCI, con-
ditional confidence set, and conditional-least favorable confidence set. For ∆SDRMpM̄q and
∆RMpM̄q, we report the performance of the conditional confidence set and the conditional-
least favorable confidence set. All results are averaged over 1000 bootstrap samples.

43Since implementing the bootstrap in practice is logistically challenging, we do so for one paper rather
than the full 12 papers in the survey. We chose the first paper alphabetically to minimize concerns about
cherry-picking.
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B.3.2 Size control simulations

Table 2 reports the maximum rejection rate of each procedure over a grid of parameter values
θ within the identified set Spβ,∆q for ∆ “ ∆SDpMq and ∆ “ ∆SDPBpMq under parallel
trends (i.e., β “ 0). We report results for M{σ1 “ 0, 1, 2, 3, 4, 5. The table shows that all
our procedures approximately control size, with null rejection rates not exceeding 0.08.

∆ M{σ1 Conditional FLCI C-LF Hybrid
∆SDpMq

0 0.073 0.078 0.069
1 0.046 0.061 0.044
2 0.038 0.072 0.037
3 0.040 0.072 0.038
4 0.049 0.072 0.045
5 0.059 0.072 0.051

∆SDPBpMq

0 0.079 0.078 0.074
1 0.052 0.047 0.048
2 0.046 0.055 0.042
3 0.051 0.058 0.046
4 0.055 0.058 0.051
5 0.059 0.058 0.057

Table 2: Maximum null rejection probability over the identified set Spβ,∆q for ∆ “ ∆SDpMq

and ∆ “ ∆SDPBpMq under parallel trends (i.e., β “ 0) using the empirical distribution from
Bailey and Goodman-Bacon (2015).

Table 3 reports the maximum rejection rate of the conditional test and the conditional-
least favorable test over a grid of parameter values θ within the identified set Spβ,∆q for
∆ “ ∆SDRMpM̄q and ∆ “ ∆RMpM̄q under the “pulse” pre-trend (i.e., β´1 “ δ´1 and βt “ 0

for all t ‰ ´1). We report results for M̄ “ 1 and δ´1{σ1 “ 1, 2, 3. The table shows that
all our procedures approximately control size, with worst-case null rejection probability of
0.058.

B.3.3 Comparison with normal simulations

We next compare results from the non-normal simulations with estimated covariance dis-
cussed above to the normal model simulations the main text, in which β̂ is normal and Σ is
treated as known.

Figures I4-I5 shows the rejection probabilities at different values of the parameter θ using
both simulation methods for ∆SDpMq, ∆SDPBpMq at M{σ1 “ 0, 5 respectively. The results
are quite similar for all values of M{σ1 considered, and we thus omit the intermediate values.
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∆ δ´1{σ1 Conditional C-LF Hybrid
∆SDRMpM̄q

1 0.009 0.008
2 0.037 0.035
3 0.058 0.054

∆RMpM̄q

1 0.005 0.005
2 0.017 0.016
3 0.024 0.023

Table 3: Maximum null rejection probability over the identified set Spβ,∆q for ∆ “

∆SDRMpM̄q and ∆ “ ∆RMpM̄q under the “pulse” pre-trend (i.e., β´1 “ δ´1 and βt “ 0
for all t ‰ ´1) and M̄ “ 1 using the empirical distribution from Bailey and Goodman-Bacon
(2015). We report results for δ´1{σ1 “ 1, 2, 3.

The estimated average rejection rates of each procedure are quite similar in the non-normal
simulations and the normal simulations across each choice of ∆. As a result, the relative
rankings of the procedures in terms of power are the same in the non-normal simulations
as in the normal simulations discussed in the main text. Similarly, Figures I6-I7 shows the
rejection probabilities at different values of the parameter θ using both simulation methods
for ∆SDRMpM̄q, ∆RMpM̄q at δ´1{σ1 “ 1, 2, 3 respectively and M̄ “ 1.
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Figure I4: Comparison of rejection probabilities using bootstrap and normal simulations.
Results are shown for θ “ τ1, and each choice of ∆ “ ∆SDpMq,∆SDPBpMq, and M{σ1 “ 0.
The average rejection rate for the non-normal simulations are in red and the average rejection
rate for the normal simulations are in blue; the dashed black lines indicate the identified set
bounds. Results are averaged over 1000 simulations.
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Figure I5: Comparison of rejection probabilities using bootstrap and normal simulations.
Results are shown for θ “ τ1, and each choice of ∆ “ ∆SDpMq,∆SDPBpMq, and M{σ1 “ 5.
The average rejection rate for the non-normal simulations are in red and the average rejection
rate for the normal simulations are in blue; the dashed black lines indicate the identified set
bounds. Results are averaged over 1000 simulations.
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Figure I6: Comparison of rejection probabilities using bootstrap and normal simulations for
∆SDRMpM̄q and ∆RMpM̄q. Results are shown for θ “ τ1, M̄ “ 1 and δ´1{σ1 “ 1. The
average rejection rate for the non-normal simulations are in red and the average rejection
rate for the normal simulations are in blue; the dashed black lines indicate the identified set
bounds. Results are averaged over 1000 simulations.
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Figure I7: Comparison of rejection probabilities using bootstrap and normal simulations for
∆SDRMpM̄q and ∆RMpM̄q. Results are shown for θ “ τ1, M̄ “ 1 and δ´1{σ1 “ 3. The
average rejection rate for the non-normal simulations are in red and the average rejection
rate for the normal simulations are in blue; the dashed black lines indicate the identified set
bounds. Results are averaged over 1000 simulations.
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C Comparing Confidence Sets to Empirical Analogs to

the Identified Set

In this section we report the estimated identified set, Spβ̂,∆q, for our applications, in addition
to the confidence sets described in the paper. We show below that the estimated identified
set is respectively Hausdorff consistent and inner consistent for the true identified set for
the Benzarti and Carloni (2019) and Lovenheim and Willen (2019) applications. Thus,
comparing the estimated identified set to the confidence sets is informative about the extent
to which the width of the confidence sets is driven by sampling uncertainty versus the width
of the identified set.

Empirical Results. Figure I8 shows the estimated identified sets for the Benzarti and
Carloni application. The figure suggests that both sampling uncertainty and the length of
the identified set can be important. In the left panel, for example, the confidence set is 78%
larger than the estimated identified set for M̄ “ 0.5. This number decreases as M̄ increases
(and the estimated identified set becomes longer), reaching about 40% at M̄ “ 2.

Figure I9 shows the estimated identified sets for the Lovenheim and Willen application.
We note that the estimated identified set is empty for values of M close to zero.44 Intuitively,
the estimated identified set can be empty when ∆ “ ∆SDpMq forM « 0, since if δ P ∆SDpMq

for M « 0, the true pre-trend βpre must be very close to linear. However, even if βpre is
exactly linear, the sample analog β̂pre will typically be non-linear owing to sampling variation,
leading the estimated identified set to be empty. This occurs for values of M less than 1.49
for the specification for men and 2.01 for the specification for women, as shown in Figure I9.
However, we note that when ∆ “ ∆SDpMq, the length of the true identified set (assuming
it is non-empty) is only a function of M and not of β: specifically, for θ “ τt, the identified
set has length tpt ` 1qM . We can thus compare the length of our confidence set relative to
the length of the true identified set for each value of M (even though the true identified set
is unknown). When M “ 0.005, for example, the confidence sets are 3.96 and 2.59 times
longer than the length of the identified set for women and men, respectively, suggesting
that the sampling variation is large relative to the length of the identified set. The relative
importance of the sampling variation decreases as M increases, and thus the identified set
widens. When M “ 0.04, for example, these ratios are 1.59 and 1.43, and they decrease to
1.28 and 1.26 when M “ 0.1.

44We expand the range of the x-axis relative to the main text to show larger values of M , where the
estimated identified set is non-empty.
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Consistency proofs. We next formally establish the Hausdorff and inner consistency of
the estimated identified set in our applications. We first review the notions of Hausdorff
and inner consistency for set estimators. For a point x P R and set B Ď R, let dpx,Bq :“

infbPB |x ´ b|. For two non-empty sets B and C, the Hausdorff metric is then defined as

dHpB,Cq :“ maxt sup
bPB

dpb, Cq, sup
cPC

dpc, Bq u,

and we define dHpB,Cq “ 8 if either A or B is empty. An estimator B̂ is said to be
Hausdorff consistent for a non-empty set B if dHpB̂, Bq Ñp 0. Likewise, we say that B̂ is
inner consistent for B if supbPB̂ dpb, Bq Ñp 0, where supbPB̂ dpb, Bq “ 0 if B̂ “ ∅. Intuitively,
Hausdorff consistency requires that asymptotically every point in B̂ is close to a point in B
and vice versa; whereas inner consistency requires only that every point in B̂ is close to a
point in B.

Proposition C.1. Suppose θ “ τt for some t “ 1, . . . , T̄ or θ “ T̄´1pτ1 ` ... ` τT̄ ). Assume
that β̂ Ñp β, where β satisfies (3) with δ P ∆.

1. If ∆ “ ∆RMpM̄q, then Spβ̂,∆q is Hausdorff consistent for Spβ,∆q.

2. If ∆ “ ∆SDpMq, then Spβ̂,∆q is inner consistent for Spβ,∆q.

Proof. For ease of exposition, we provide a proof for the case where θ “ τ1; the cases where
θ “ τt for t ą 1 or θ “ T̄´1pτ1 ` ... ` τT̄ q can be handled analogously.

When ∆ “ ∆RMpM̄q observe that

Spβ̂,∆q “ β̂1 ˘ M̄ max
să0

|β̂s`1 ´ β̂s|.

Since β̂ Ñp β, it follows from the continuous mapping theorem that

β̂1 ` M̄ max
să0

|β̂s`1 ´ β̂s| Ñp β1 ` M̄ max
să0

|βs`1 ´ βs|,

so that the upper bound of Spβ̂,∆q converges in probability to the upper bound of Spβ,∆q.
Convergence of the lower bound can be shown analogously, from which the result follows.

When ∆ “ ∆SDpMq, observe that

Spβ̂,∆q “

$

&

%

pβ̂1 ` β̂´1q ˘ M if β̂pre P ∆pre

∅ if β̂pre R ∆pre

,
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where recall that ∆pre “ tδpre : Dδpost s.t. pδ1
pre, δ

1
postq

1 P ∆u. (Note that we did not need
to consider the case where β̂pre R ∆pre when ∆ “ ∆RM , since in that case ∆pre “ R¯

T .) It
follows that Spβ̂,∆q Ď pβ̂1 ` β̂´1q ˘ M . However, by the continuous mapping theorem, the
upper and lower bounds of (β̂1 ` β̂´1q ˘ M converge in probability to β1 ` β´1 ˘ M , which
are the upper and lower bounds of Spβ,∆q, from which the inner consistency of Spβ̂,∆q is
immediate.

Figure I8: Comparison of confidence sets and estimated identified set for Benzarti and
Carloni (2019) application

Figure I9: Comparison of confidence sets and estimated identified sets for Lovenheim and
Willen (2019) application
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