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This online appendix contains proofs and additional results for the paper “A More Cred-
ible Approach to Parallel Trends” by Ashesh Rambachan and Jonathan Roth. Section A
contains proofs and auxilliary lemmas for results stated in the main text. Section B contains
additional details and results from our simulations. Section C compares our confidence sets

to the sample analog to the identified set in our empirical applications.

A Proofs of Results in Main Text

Proof of Lemma 2.2

Proof. By equation (7), we can write the coverage requirement as
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The left-hand side is bounded below by
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which is at least 1 — « since Cn,k(én, ¥,) satisfies (10) for A = Ay, for all k. O

Proof of Proposition 3.1

Proof. We verify that the conditions of the proposition are sufficient for the conditions for
size control for the conditional and hybrid tests given in Proposition 2 of ARP. Note that in
our setting, the non-stochastic variable X plays the role of the instruments Z in ARP, so all
statements in ARP conditional on Z can be interpreted as unconditional in our context.

First, suppose that Assumption 5(A) holds. Then we can write Y, () = AB, — d —
Aiyf = TUL0) — ¢(0), where U,(0) = QfB, and ¢(8) = d + A 140 is non-stochastic,



which is the structure required by the first part of Assumption 1 of ARP.*” Note that
Qp :=Varp(U,(0)) = QXpQ’. Since Q is full-rank by assumption and ¥p has eigenvalues
bounded away from zero by Assumption 3, so too does Qp = QX pQ’, as required by the
latter part of Assumption 1 in ARP. Next, note that our estimate of the variance of Y, (6),
A3, A, can be expressed as T,T, for Q, = Q3,Q’. It is immediate from Assumption 4
that €0, is uniformly consistent for Qp, as required in Assumption 2 in ARP. Next, note that
if f € BLy, then g(x) = ||G||,,) f(Gz) is also in BLy, where || ||, is the operator norm. This
implies that

sup
feBLy

Br | £(/iQ(3 = 5p)| ~EL1(Q€r)]| < 1Qlly sup B [ £((5 ~ Bp) | ~ BLf (e

Since U, (0) = Qp,, Assumption 2 together with the previous argument implies that

lim sup sup
n—%0 peP feBL,

Ep [£(Va(UL(60) = Q8p)] — E[7Er)]| = 0.

where £p ~ N (0, Qp). This verifies Assumption 3 in ARP. Note that Assumption 5(A)
implies that Assumption D.1 in ARP is satisfied, and Assumption D.2 in ARP is trivially
satisfied for X = {X}. Hence, Proposition D.1 in ARP implies that Assumption 4 in ARP
is satisfied. We have thus verified the conditions for size control in Proposition 2 of ARP.
Second, consider the case where Assumption 5(B) holds. In this case, we can write
Y, (0) = TU,(0) — ¢(), where now T = A, U,(6) = £, and {(0) = d + A ;y. Assumptions
1-3 in ARP can be verified analogously to the arguments above for the case where T' is as

given in Assumption 5(A). To verify Assumption 4 in ARP, we must show that

sup min (v — a¥) AL pA'(y — ¢7) > 0,
ZPES ’Y,’?EV‘-(ZP),’Y#’%&ZO

where V;(X) is the subset of vertices in V(X) that can be optimal when 7 > 0 (see Lemma
4 in ARP). By Lemma A.1 below, each v € V(Xp) can be written as ¢;(Xp)7; for some
element 7; € V(I). Moreover, ¢;(¥p) = (7;6(Xp))~", where 5(¥p) is the square root of the
diagonal elements of Qp = AXp A’. However, the jth diagonal element of Qp is A(]’7.)ZPA/(]<7.),
where A(;.) is the jth row of A. Since the eigenvalues of Xp are bounded above by A, it
follows that A¢;)XpA(; , is bounded above by M|Ag)|>. The elements of 5(Zp) are thus

)

39 Assumption 1 of ARP imposes the structure Y; = TU; +(;, where the index i corresponds with individual
observations and the sample moments are formed by averaging across :. However, this structure is only used
in the proofs of size control to show that the scaled sample moments, denoted Y,, o in ARP, have the structure
Yoo =TU, 0+ Guo(0), where U, ¢ and ¢, o are sample averages of U; and ¢;. In our setting Y, is analogous
to ﬁYn,O in ARP, and we thus verify this structure directly.
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bounded above, and hence ¢;(Xp) is bounded away from zero. Thus, there exists a ¢ such
that ¢;(X¥p) > c for all ¥p € S. Hence,

sup min (v — a7) ASpA'(y — a7) = & (Sup min (v —ay) AXpA' (v — cﬁy))
ZPGS 77’76‘/1' (EP);Y?&:%(LZO ZPES ’Y,:YEV(I),'Y#;/,CLZO
> 2 min —a¥y) A 2)\) ,
- (%%VT(IM#%&?O 1ty VAR

where the second inequality uses the fact that the minimal eigenvalue of ¥Xp is at least .
To complete the proof, it thus suffices to show that V;(I) contains only vertices such that
;A # 0, so that the lower bound obtained in the previous display is strictly positive by
Assumption 5(B). To show this, note that if 77 A = 0, then 7;Y,,(0) = 7;(AB, —d — A 1y0) =
—7¥;d. Since A is non-empty, there exists some § such that Aé —d < 0, which implies
that —7id = 4;(Ad — d) < 0 since 7; = 0 by construction. We have thus established that
W;?(é) < 0, and hence ¥; can never be optimal when 7 > 0, so 4; ¢ V;(I). We have thus
verified that Assumption 4 in ARP holds, as needed.

O

A.1 Proof and auxiliary lemmas for uniform consistency

Proof of Proposition 3.2

Proof. Towards contradiction, suppose that the conditional test is not consistent. Then there
exists an increasing sequence of sample sizes and distributions (n,,, Py,), * > 0, and w > 0
such that

limsupEp, [wS(ﬂAnm,Ad, ‘9731; + T,

m—00

S|

f]nm)] <1l-w.

It is straightforward to verify that the conditional test is invariant to a re-scaling of the units

of B, so that ¥/S(Bn,,, A, d, 0% + , #inm) = S (/T B s Ay /Ty /o (08 + ), 5,.).

Thus, along this sequence,

lim 5up B, [0 (v A, s i (038, + ), 5,) | < 1

m—>00
Since V is compact, we can extract a further subsequence m; under which Vp, — V* for
V* e V. Denote the top left block of V* by >»*.

To obtain a contradiction, we will construct a further subsequence such that the condi-
tions of Lemma A.2 hold asymptotically with probability at least 1-w/2. From Lemma A.1,

each element vp, € V(Xp, ) can be written as ¢;(Xp,, )7, where 71, ..., 7 are the elements
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of V(I). We argued in the proof to Proposition 3.1 that there exists a constant ¢ such that
¢j(Xp) = c for all j whenever ¥p has eigenvalues bounded above by A. By an analogous
argument, we can show that there exists a constant ¢ such that ¢;(¥p) < ¢ whenever Xp
has eigenvalues bounded below by A. Thus, ¢ < ¢j(X¥p) < ¢ for ¥p € S. For v € V(Ep),
Y AXpA'y = ¢;(¥p)*7;AXpA'7; for some j, and thus for Xp € S, we have that

CITAIPA < AT p Ay < &[5A|P.

Thus, either 7/ A¥pA’'y = 0 (if ;A = 0), or

¢ min [|7jA|PA <4 ASpAy <& max [|FA|]PA,
7, A0 7, A0

where the upper and lower bounds are finite and positive since V(1) is finite. Now consider
the vertex %, ; = cj(ﬁ]nml)%. By the continuous mapping theorem, %IIJAEAIPA’%LM -,
cj(E*)z_’ A¥*A'%;. From this convergence and the inequalities in the previous display, it
follows that there exist constants o2 and 2 such that condition (i) of Lemma A.2 is satisfied
w.p.a. 1.

Next, define

n(B,A,d,0,%) :=minn s.t. A —d— A(.J)H — AT < 10, (21)
n,T

where & is the square root of the diagonal elements of AYA’. Since 6% € S(Bp,A),
n(Bp, A, d, 0%, p) < 0. By duality, we can write n(8p, A, d, 0%, Lp) = max,ey(s,) 7 (ABp —
d— A 1y0"). Tt follows that there exists some 7p € V(Xp) such that 75 (ABp —d— A 1y0") =
0 and —4pA.;) > 0, since otherwise for ¢ > 0 sufficiently small we would have that
n(Bp, A, d, 0% + €, %p) = max ey sy YV (ABp — d — Ap1y (0™ + €)) < 0, which would im-
ply that 0** + ¢ € S(Bp,A), which is a contradiction. From Lemma A.1, p, € V(Xp,,)
can be written as ¢;(Xp,, )7;, where ¢;(¥) = ¢ > 0 for all ¥ € S and 7y, ..., 7, are the ele-
ments of V(I). Since V' (I) is finite, we can extract a further subsequence (n;, P;) such that
Ap, = cj+(Xp)7;+ for fixed j*. For ease of notation, without loss of generality we assume
j* = 1. It follows that

U(\/ﬁlén“ A, \/77[(1, \/77[(9%) + [L’), inl) = max 7y \/7(‘46?11 —d - (9“6 + ZL’))

VEV (En,)
> /e (Sn )71 (AB, —d — A 1>(9%’+I>>
= 1 (Zn WU ABa, — Br) + Ve (Sn) (—31 A ).
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By the continuous mapping theorem, ¢;(3,,) —, ¢;(2*) > 0. Assumption 6 and the contin-
uous mapping theorem together imply that the first term in the previous display converges
in distribution to a N (0, ¢;(X*)?3] AX*A'%,) distribution, while the second term converges
in probability to oo. It follows that n(mBZ,A,\/ﬁld, \/TTZ(Q%’ + a:),f]nl) —, 00, and thus
condition (ii) of Lemma A.2 holds w.p.a. 1 for any value of M.

To complete the proof, we construct a further subsequence such that condition (iii) of
Lemma A.2 holds asymptotically with probability at least 1-w/2. Let Y, = ABW —d -
121(.71)(9%’ + z) and ji; = ABp —d — 121(.71)(0%’ + ). Recall that any element of V(,,), say
V1,5, takes the form v, ; = ¢;(3,,)7;, and our argument above implies that 7} < —7;A( 1.
Since ¢;(Xy,) —p ¢j(X*) > 0 by the continuous mapping theorem, and ¥}/ is bounded from
above, we can extract a subsequence [, along which v /i, —, v; € Ru {—0co}. The vertex
set is finite, and so passing to further subsequences we obtain a subsequence indexed by k
such that v ;fix —p v; € R {—co} for all j. Observe that for distinct vertices i and j with

A £0,

Consider first the case where v ;fix and ~; ;i both have finite limits v; and v;. Since
V(e (X57)7; — ¢ (X%)7;) fu, is non-stochastic, we can extra a further subsequence k; such
that /mg, (¢;(X*)7; — ¢;(¥*)3))jir, — v* € R U {£oo}. Assumption 6 and the continuous
mapping theorem imply that (c;(3,, )% — ¢;(3n,, )75) \/Tk: Ya, converges in distribution to

Gij = (ci(X") 7 — ¢ (X7)%;) Agp + ﬁchfg - ﬁDC}& + v,
where (£3,&%)" ~ N (0, V*) and Dg; is the gradient of ¢;(¥*) with respect to vec(X*). The
limiting distribution is normal, and limiting variance must be positive since Assumptions
5 and 7 imply that (¢;(3*)y; — ¢;(X*)7,) A¢s has positive variance’’ and is not perfectly
colinear with &y. It follows that for any 19, there exists some € > 0 such that the probability
that (;; € (—e, €) is less than 9. On the other hand, if 4/, — —o0, then ci(f]nk)ﬁiﬁ}}k -
—00, SO ci(f]nk)fyi is optimal for ﬁ(ﬁ@nk,ﬁd, W(@}éﬁ + x),f]nk) w.p.a. 0, whereas if
;i — —o0, then ﬁ(ﬁ@nk, Vid, /ri (08 + ), S, ) — c](f]k)vg\/ﬂ% —, 0. Since there

40This is immediate under Assumption 5(B). Under Assumption 5(A), the proof of Proposition D.1 in
ARP shows that if there is a positive constant ¢ such (3; — ¢7;)'A = 0, then ¢;(X,, )% and ¢;(X,,)7; can
only be optimal vertices if 77 < 0. Since we’ve shown 7) —, 00, such vertices will be optimal w.p.a. 0, and

thus can be ignored when establishing part (iii) of Lemma A.2.
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are a finite number of pairs of vertices, we can choose ¥ such that the probability that
Gij € (—€, €) for any (4, j) is bounded above by w/2, and thus condition (iii) of Lemma A .2 is
satisfied with probability at least w/2, as we wished to show. The result for the hybrid test

is immediate from the fact that the hybrid test rejects whenever the size-9=" conditional

test rejects. O

Lemma A.1. Let F(X) := {y : 121’(.7_1)7 = 0,0(X)'y = 1,7 = 0} be the feasible set of the
dual problem, where (%) is the vector containing the square-roots of the diagonal elements
of AN A", Let V(X)) denote the set of vertices of FI(X). Then, for any ¥ positive definite,

V(Z) = {Cl<2)’71, ceey CJ(E)’?J},

where 71, ..., 7y are the elements of V(I) and ¢;(¥) = (7;6(%)) "

Proof of Lemma A.1

Proof. Immediate from Lemma A.2 in ARP. O

Lemma A.2. For any positive constants €, 02,32, there exists a finite constant C such that

the conditional test @/JS(,@, A,d,0,%) rejects whenever the following conditions are satisfied
(i) For all v € V(X), either Y AL Ay =0 or g? < AL Ay < 5%
(ii) 1) = max ey (x) VY > C, where Y = AB —d— 121(.,1)9.

(111) If the optimal vertex v, satisfies, v, AL A"y, > 0, then for all ¥ € V(X) with 5 # 7., we
have that |7.Y —7'Y| > e.

Proof. Let 3 = AXA’. If the optimal vertex 7, satisfies 7,37, = 0, then the conditional
test rejects whenever 7 > 0, so condition (ii) with any C' > 0 suffices. For the remainder of
the proof, we show that conditions (i)-(iii) are sufficient when 7, %7, # 0. Observe that the

conditional test rejects if and only if > 0 and

P(t) — d(2)
O (zvp) — P(zl0)

>1-—aq,

where t = ;@, 2o = ZL:, 2P = %p, and o* = 4 /’y;ify*. It is clear that the left-hand side of
the previous display is increasing in ¢t and decreasing in z“?. It is also decreasing in z'°, since

the derivative with respect to 2% is

_ 0(210) (R(2"7) — D(2"))

@(zr) —a(o)E
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From Lemma A.3 below, condition (iii) implies that  — v!° > ¢, and thus 2!° < t — ¢, for

¢ = ¢/d. This, combined with the previous discussion, implies that the conditional test

rejects whenever 7 > 0 and
O(t) — O(t — €)
1—®(t—€)

By L’Hopitale’s rule, we have that
LR -8 6t E) — (1)

= lim =lim1—

im0 1—®(t—¢€)  iow Pt — &) = gt —e)

>1-—o.

Hence, there exists C' > 0 such that the conditional test rejects whenever t > C. But ¢ = %
and thus ¢t > C' whenever 7 > C for C = (5.
O

Lemma A.3. Consider the conditional test wg(é, A,d,0,%). If the optimal vertex 7, is such

that V,AS Ay, > 0, then ) — v > min ey (s) 4 z7s V.Y — 'Y | where Y = A — d — 121(.71)9.
LASA! : ~ ~
max,;y::/@) 'y/’:kEA/'y MNyev (), y#£v4 h/:kY - ry/Y’ :

Similarly, v'P — 7 =

Proof. Since 7 is finite, the results hold trivially when v and v* are infinite. For the
remainder of the proof, we assume that they are finite. Let ¥ = AYA’. Lemma 1 in ARP
implies that ~
: Va2
v = min - —,
7V (2) = Sy>0 Ve Xy — Vi Xy

where S = (I — 7,2;:* v.)Y. Let 4 denote the vertex at which the minimum is obtained.
*

Substituting in the definition of S and re-arranging terms, we obtain that

i ol = Ve XY

—v (LY =7Y) = (LY - 7Y),

Vi — 1ZA

from which the result for v is immediate. We can analogously show that

u ~ 7;27* IRV, ~ I\
v =) = — = — (1Y —7Y),

HET =y

for a vertex 4 such that 7,35 — 7,37, > 0. The result then follows from noting that

Vv nEn B
VXY = VXY YRy MaXaey(m) Y XY
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A.2 Proof and auxiliary lemmas for uniform local asymptotic power
Proof of Proposition 3.3

Proof. By an invariance to scale argument as in Proposition 3.2, it is sufficient to show that

lim sup [Ep [ (b, A, vnd, Vb +2,50) | = p2(P,2)] = 0.
n—% pep,
To show this, it suffices to establish that for every subsequence (n,,, P,,) with n,, — o0,

there exists a further subsequence [ such that

tim [Ep, |66 (v, A, v/ud, Vb + 2, 50) | = pi(Fiw)| = 0.
Since P, € P, for each m there exists a B}, and a value 7, such that

A Brn — dg, — A )08, — Apg, 1T = 0 (22)

A px,)Pp, —d_px — A(—B;E,l)%fn - A(—Bﬁl,—l)ﬁé < —€ (23)
Since there are a finite number of possible values of B, we can extract a subsequence m;
along which B}, is constant. For simplicity of notation, we’ll denote the constant value
By, by B*. Similarly, Lemma A.4 implies that there is a unique element 4, € V(¥p, )
such that the elements of v, in positions —B* are all 0. By Lemma A.1, we can write
Yy = €i(Zp, )75 for ¢;(-) a continuous function and 7; € V/(I). Since V(I) is finite,
we can extract a subsequence my along which vy, = ¢;«(3p, )7+ for a fixed j*, which
without loss of generality we normalize to 7* = 1. Moreover, since S is compact, we can
extract a further subsequence [ along which ¥p — ¥*. By Assumption 4, f]m —, 2% The
continuous mapping theorem then implies that 7 = ¢1(Xp)%1 — c1(X%)71, and likewise,

A

A= a(Xn,)71 —p c1(X¥)71. From Lemma A9, we have that

o */A.
pr(Pyr) =@ [ —L 26D )
V' AYp Al

which combined with the convergences shown above implies that

A A
pi(PLx) — @ (M zl_a) . (24)

AT A,

Now, for the function 7(-) defined in (21), let

i = (v, Ay ud, b + 2, 55,).
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By duality, we have that

= max v (\/ﬁABnl — ud — /A0 — fl(-,n%)

YEV (En))

' (ViABy = md = A 08 — Acye)

By construction, 4;* has zero elements in positions —B* and satisfies 7} A = (. This,

combined with equation (22) implies that

’S/I*I <\/TTZABTH - \/TTZd - mz‘i(-,l)Q?D? o A ) - '7; A\/i(ﬂm 6131) - ’S/I*,A(wl)x

From Assumption 2 combined with Slutsky’s lemma, we have that
AV = ) =51 A = N (e A, (374D 45 ).

Now, consider 7, ; = cj(flm)ﬁj for j # 1. By construction J; > 0, and Lemma A .4 implies
that 7; has a non-zero element in at least one component in B*. But this, combined with
equations (22) and (23) and the fact that ¢;(3,,) —, ¢;(¥*) > 0, implies that

o (\/TTIAQPZ — Vmd — A 08 — Al ) —

and thus

i (\/nTABm — md — A 08 — ,21(.71)3;) -

as well, since as before ’yl’JA\/ﬁ(Bm — Bp,) converges in distribution to a normal distribu-
tion with finite variance. This implies that 4 is the optimizer of the problem for 7, with

probability approaching 1, and thus
i —a N (—er (ST A, e(S7)AS AT, ).

This also implies that for any j # 1, |f — ’Ayl’7j}~/2| —, o, where ¥; = \/TTZABM — /md —
\/ﬁlﬁ(.71)9’1‘3§’ - f~1(.71)x. Since there are a finite number of vertices, it follows that min;; [/ —
&l’]fﬂ — —oo. This together with the result of Lemma A.3 implies that |, — vl°| —, o0 and
[—v; 7| —, 0, where v/°, v, are the values of v'°, v*P associated with the wc(anZ,A Viud, /b +
x, an) test. Since 7); is stochastically bounded, and by construction v}° <
that v° —,

vertex used by the ng(«mlﬁm, A, \/nd, «/mQ%) + x, f]nl) test. Since, we’ve shown that 7} is
optimal w.p.a. 1, we have that 67 —, ¢;(X*)*y;AX*A’y;. From another application of the

< < vu?, it follows

—o0 and v,? —, 0. Let 67 = 'yfk’lAZA)nl A'v,; denote the variance at the optimal
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continuous mapping theorem, we have that

(/1) — D(v)°/01) . O(§) — (=») _ G
(v, /61) — (v)°/6y) ®(o0) — ®(—o0) ’

where £ ~ N (—”y{ﬁ(.J)x/«/f’y{AE*Af’yl, 1). The limiting distribution is continuous, and
thus

Py,

l

(i /01) — P(v)°/o0) ) o ) ~ Az .
(Se etk = L-0) ~PO© > 1) (D(WAE*A'%‘ )

Moreover, for o < 0.5, 2° sufficiently small, and 2% sufficiently large, (® (7)) —®(2°)) /(P (z*)—
®(2°)) > 1 — a only if 7 > 0. It follows that

®(7y/61) — P(v}°/61) ) N e
P 1-— 0) -0 | ——22— — 21, |.
i <‘I’<Uz” Ve - oGf/e) T AT AT

However, the event in the previous display is precisely the event that 1< (\/ny Bl, A, /gd, P+
x, f]nl) = 1, and thus

C A ub S N _,71/1 B N
EP[ [wa (\/E/Bb A7 \/Ed, \/EQP + z, an)] @ (\/m Zla) .

The result is then immediate from the previous display combined with (24).

Lemma A.4. If LICQ holds in direction | at Sp, then there exists a unique ¥ € V(Xp) such
that y_px = 0, where B* is the set of binding moments at the optimum to (16).

Proof. We first show that there is at most one such 4. By definition, any vertex v € V(Xp)
satisfies fy’fl(.’,l) = 0. Recall that A = A(.,post)F_l, where I' is full rank. LIC(Q implies that
A(B* post) has full row rank, and thus so does A(B*7.). It follows that A(B*,_l) has rank at
least |B*| — 1. If the rank is |B*|, then there are no non-zero solutions to vz« Ag+ _1y = 0,
and thus there are no vertices with v_g« = 0. If the rank is |B*| — 1, then any solution to
7’121(.7,1) = 0 with v_p+ = 0 takes the form v+ = ¢ - v for some constant ¢ and v a vector
the generates the one-dimensional nullspace of fl( p#,—1). However, any v € V(Xp) also must
satisfy v'6 = 1, which uniquely pins down the constant ¢. Thus, there is at most one element
of the feasible set with v_pg« = 0.

We next show that there exists such a 4. Consider the optimization n(8p, A, d, 0%, ¥ p) for
n(+) defined in (21). As argued in the proof to Proposition 3.2, since #% is on the boundary
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of the identified set, we must have n(8p, A, d,0%,¥p) = 0. However, LICQ implies that

there exists a value 7* such that

AP = s = Ayt = A7 =0
ApryBp — dpr — Apr )0F’ — Apr7* < 0.

In particular, this holds for 7* = I'_; )7*.

It follows that (n,7) = (0,7*) is a solution to
n(Bp, A,d, 0%, Yp). By duality, there is some 4 € V(Xp) that is a Lagrange multiplier for
this optimization problem. The complementary slackness conditions imply, however, that
~N_p+ = 0, as needed.

]

Lemma A.5. Suppose (3 ~ N (B, 2) for ¥ known. Let By be a closed, convex set. Then
the most-powerful size o test of Hy : 8 € By against the point alternative Hy : 8 = (4
s equivalent to the most powerful test of Hy : f = B against Hy : 8 = [a, where B =
argming.p ||8—Balls and ||-||z is the Mahalanobis norm in 3, ||x||s = Va'Slz. The most

powerful test rejects for values of (84— B)YS 23 greater than (Ba—B)S LB+ 21-a||Ba — Bl|s,
and has power against the alternative of ®(||Ba — Bl|s — z1-a), for z1—a the 1 — a quantile

of the standard normal.

Proof. Define < -,- >y, by < 2,y >x»= 2’1y, and observe that < -, - >y, is an inner product.
The result then follows immediately from the discussion in Section 2.4.3 of Ingster and Suslina

(2003), replacing all instances of the usual euclidean inner product with < -, - >y. O

Lemma A.6. Let B be a closed, convex subset of RE, and B4 ¢ B. Let B = arg Mingep |18 —
Balls, where ||z||3 = 'Sz for some positive definite matriz 3. Then for any 3 € B,
(6= B2)S7 (B~ B) = 0.
Proof. Consider any 3 € B. Define 5y = 0(5 — B) + /3, and note that since B is convex 3y € B
for any 6 € [0,1]. Further,

180 — Balls = %118 = BII% +20(8 — Ba)S7'(B = B) + 115 — Balls.
Differentiating with respect to 6, we have
80— Balle = 20118~ BlIE + 203 — B2 (8 - B),

from which we see that the derivative evaluated at # = 0 is Z(ﬁ~ — Ba)E7H(Ba — B) Since f3
minimizes the norm, it follows that we must have 2(3 — Ba) X7 (Ba — B) > 0, else we could

achieve a lower value of the norm at 5y by choosing ¢ > 0 sufficiently small. O
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Lemma A.7. Let B = {8 € RE : /3 < d} for some v € RE\{0} and d € R. Let

B = argming.g ||8 — Ballz for some B4 ¢ B, where ||z]|3, = 2'S7 @ and X is positive definite.
Then (Sa — B)’E_l = ¢’ for the positive constant ¢ = “2a=4

V'3

Proof. Note that we can form a basis v, 0g, ..., 0k such that v'0; = 0 for j = 2,.... K. It
follows by construction that for any j = 2,.., K and any ¢ € R, B +t-0; € B. Hence, from

Lemma A.G, —(84 — 8)'’S7(t0;) = 0. Since we can choose ¢ both positive and negative, it

follows that (84— )20, = 0 for all j. Since (84— 3)'S~! is orthogonal to {Da, ..., Uk }, and

{v, Dy, ..., 0} form a basis, we have that (84 — 3)’2"! = ¢ v/, for some ¢ € R. Multiplying
both sides of the equation on the right by v, we obtain that (54 — B)’v = ¢-v'Yv. However,
since B is the closest point to 54 in Mahalanobis distance, it must be on the boundary of B,
and so v/ = d. Tt follows that ¢ = (v/84 — d)/(vSv), which is clearly positive since S5 ¢ B

and thus v/84 > d. H

Lemma A.8 (Power of optimal test for linear subspace). Let B = {3 € R : v/'3 < d}
for some v e RE\{0} and d € R. Suppose B~ N (B, X) for X positive definite known, and
consider the problem of testing Hy : B € B against Hy : § = [a for some B4 ¢ B. Then the

most powerful size-a test of Hy against H4 is a one-sided t-test that rejects for large values
of V'3, and has power equal to O((V'fa—d)/VV'3v — z1_4).

Proof. From Lemma A.5, the most powerful test rejects for large values of (84 — B)’ ¥t B ,

where f = arg ming.g ||8 — Bal|s, and has power ®(||84 — Blls — #1-a). By Lemma A.7,

(Ba—B)E™t =, for c = (Vs —d)/(v'Sv). Tt follows that

184 — Bl|% = (Ba— B)'S7(Ba — B)
= /(84— B)
= c(v'Ba —d) = (V'Ba — d)*/(v'Sv),

where we use the fact that v/3 = d, since 3 must be on the boundary of B, as argued in the

proof to Lemma A.7. The result then follows immediately. O]

—’7/121(.71)‘%
VY AL p Ay

unique element of V(3p) with y_px = 0 (see Lemma A.J).

Lemma A.9. If P € P, then pi(P,x) = — zla>, where 7 € V(Xp) is the

Proof. Suppose 3, ~ N (Bp, Sp/n). Let B, = {8 : 0% +x/\/n € S(B, A)} be the set of values
for B consistent with the null that § = 0% + x/4/n. Observe that B, = {8 : n(8, A, d, 0" +
x/y/n,Xp) < 0}, where 7n(-) is defined in (21). From Lemma A.5, the most powerful test of
Hy : p € B, against Hy : 8 = (p rejects for large values of (8p — B)’Z;l,@n. To derive the
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optimal test, it is instructive to first consider a simpler testing problem. From Lemma A .4,
there exists a unique 7 € V(Xp) such that 7_p+ = 0, where B* are the binding rows at the
solution to (16) satisfying LICQ. Define B] = {8 : (A8 —d— A 1y(0% +x/\/n)) < 0}. We
first consider testing Hy : 3 € B against Hy : § = [Sp. From Lemma A.7, the optimal test

rejects for large values of 7/Af3, and has power @(\/_4—_ — Z1_q), Where
¥ AZpA'y/n

h =7 (ABp —d— A1) (08 + x/\/n)). (25)

From the definition of LICQ in direction [, however, there exists a value 7* such that

ApeyBp — dps — A 0% — Ap,_1y7* = 0 (26)
A(,B*’.)ﬁp — d_B* — A(,B,l)é’}éb — A(fB,l)%* <0 (27)
By construction, f‘y’fl(.,_l) = 0 and y_p* = 0, which combined with the previous two dis-

plays implies that h = —"y’fl(.’l)x/\/ﬁ, and hence the power of the optimal test of H, is

o (_—'y’fl(.,l)x — 21

VY AZp Ay *

To complete the proof, it thus suffices to show that the optimal test of H, against Hy is
the same as the optimal test of Hy against H; for n sufficiently large. To this end, note that
B, < B), since by duality,

n(B, A, d, 0" +x/\/n, 3p) = Inax )7,(A5—d—z‘~1(-,1)(9?)b+x/\/ﬁ)) > 5 (AB—d—A 1) (07 +z/y/n)).
P

Thus, Lemma A.5 implies that the optimal test under Hy coincides with the optimal test

under H; whenever 3, = arg min g |8 — Bpl|spm is in B,. From Lemma A.7, however,

Rl h / : : : — _~AA

By, = Bp + —mv (3Xp/n), for h defined in (25). Using the equality h ¥ Acn/vn

derived above, we see that

~ 1 ”7’/1(.71)1'

/: /__—7/142
o= O A

and thus we can write 5 = Bp — v/y/n for a finite vector v. From Lemma A .4, every
v € V(Xp) with v # 4 has y_p« # 0. Since v > 0 by construction, equations (26) and (27)
imply that

Y (ABp —d— A(1)0¥) <0

for all v # 7, where we use the fact that 7’[1(.7_1) = 0 by construction. We’ve shown,
however, that 7' (ASp — d — A(‘,l)é}é”) = (0. By continuity arguments, it follows that for n
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sufficiently large,

WA O + /v S) = max o (A(Bp = v/vn) = d = A (B +/v0)

P)

is equal to

Y(ABp —v/v/n—d— A. (0% + x/\/n)),

and thus 3, € B,,, as we wished to show.

A.3 Proofs and auxiliary lemmas for FLCIs

Proof of Proposition 4.2

Proof. First, suppose Assumption 9 holds. Without loss of generality, we show P ((9“” + )€ Ci Ler ) —
0 for any z > 0. By Lemma A.11 there exists (a, 0) such that b(a@, 0) = $LID(6pre, A) =: binin
and E; _\rs5ir50) [EL + @’Bn] = 2(6"+0") = 0™ Let C, :=a+ 0B, + xn(a@,v) denote the
fixed length confidence interval based on (a, ).

By construction, X, := x»(@,) is the 1 — o quantile of the [N (b, 02,,) | distribution.
Since 02, = 202, — 0, the [N (bpin, 02,,) | distribution collapses to a point mass at byn,
and thus Y, — bmin. By construction, the half-length of the shortest FLCI y,, := Xn (G V)
must be less than or equal to Y,, and so limsup,_,, Xn < bmin. Let b, := b(an,v,) be the
worst-case bias of the optimal FLCI. Since « € (0,0.5], Lemma A.12 implies that x,, = b,.
Additionally, Lemma A.10 implies that b, > %L[ D(8prey A) = byin, and thus x, = bin.
Hence, X, — bpin implies b, — by,. Additionally, note that for a € (0,0.5], xn(a,v) is
increasing in both b(a, v) and o,,,. Since byin < b, and x,, < Xn, it must be that o,, ,, < 040,
from which it follows that o, , — 0.

Now, we claim that 1, := Ej 545, [an + vq’ﬁn] converges to 9™ := (0 + ¢'%).
To show this, note that u, = a, + v,3 for 3 = § + 7. Since 0“0 € S(B,A), by the
definition of the identified set there exist §“°, 8" € A and 7%, 7!* such that B = 6% 4 740 =

o 4 7 gub = l’T;‘fst, and 0% = l'TZl)’;st. Thus, 6> — Es x50 [an - U;LBn] = 0" — 1, and

EBn~N(B,En) [an + U;LB”] — 0" = p,, — 0. This implies that b, > max{0"® — u,, p,, — 0} =
bin + |t — 0™, where the equality uses the fact that 0“0 — 0% = LID(5a pre; A) = 2bmin.
Since we’ve shown that b, — by, it follows that j, — 0™, as desired.

Next, note that if 3, ~ N+, %,), then a, + U;LBn ~N (,un, Ugmn). Observe that
e CELCT if and only if a, + V' B € [0 = Xn,0 + Xn]. Thus,
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Tvnn
Now, recalling that §*® = §™¢+b,.. by construction, we have Py N5, 5 ((Q“b + ) e CELCI )

equals

(28)

Ovp,n Ovp,n

Note that the term inside the second normal CDF in the previous display equals

Xn—bn+x+9mid—un+l_)mm—bn

Oy, T Ovy, )1

However, the first summand above is bounded between —z;_,/; and —2;_, by Lemma A.12.
Additionally, we’ve shown that ™7 — 1, — 0 and by, — b, — 0, so the numerator of the
second summand converges to > 0. Since the denominator o,, , — 0, the expression in the
previous display diverges to o0, and hence the second normal CDF term in (28) converges to
1, which implies that P ((6** + z) € CELYT) — 0, as needed.

In order to prove the other direction, we proceed via the contrapositive. Towards this,
LID(5pre, A). By
Lemma A.10, b, := b(ay,,v,) = %E =: byin. As argued earlier in the proof, since o € (0, .5],
Xn = b, = %E. If L = oo, then CQQCI is the real line, and thus never rejects, so CFLCI
is trivially inconsistent under the assumption that S(0 + 7,A) # R. For the remainder
of the proof, we assume L < L < co. From Lemma 2.1, S(6 + 7,A) = [6%, 0], where
gt — 0" = LID(Spre, A) = L. Let € = 2(L — L), and set 69" := "> + ¢ and 65" := 0" — e.
Let 6™ = 1(6“® + ') be the midpoint of the identified set. By construction, ¢ — g™ =
gmid — 0gut = 2L+ e < £ L. Since CELYT is an interval with half-length at least 3L, it follows
that if 0™ e CELC! then at least one of 67", 63" is also in 5!, Hence, P (Hf“t e cfLel) 4
P (05 € CILCT) = P (0™ e CIECT) = 1 — o, where the final bound follows since CELC!
satisfies the coverage requirement (10). It follows that limsup,, ., P (67 € CIL¢T) = (1 —
a) > 0 for at least one j € {1,2}. O

suppose Assumption 9 fails. Let L := LID(,.,A) and L := SUP5, e

pre

Lemma A.10 (Bounds for worst-case bias). For any (a,v), b(a,v) = SUDPs, . en e LID (Opre, A).

1
2
Proof. Since f = § + 7, we can write the bias of the affine estimator a + U’B as b =a+
V'8 + (Upost — 1) Tpost. Since T,os is unrestricted in the maximization in (17), we see that the
worst-case bias will be infinite if v,,s # [ and the lemma holds trivially. We can thus restrict
attention to affine estimators with vy,s = [, in which case the worst-case bias reduces to

b(a,v) = sup |a + v'8| = sup |a + v, Spre + 'Spost- (29)

e
dEA deA P
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Now, pick any 9%, € Ap,.. First, suppose that the minimum (min5 Ubpost, s.t. 6 € A, dpre = 07 )

pre pre

and the maximum (maX5 Ubposts st. 6 € A bpre = 5;,‘Te) are finite. Let 6™ and 6™* be the

associated solutions. By construction, 6% = §min = §*

e e pre- FOT any up., we can apply the

triangle inequality to show that

’CL + o gma + llémax‘ + ‘a + v 5mzn + llém'm‘ > |(CL + o §maz + llémax) . (a + v 5mm + llémln)‘

pre~pre post pre“pre post pre“pre post pre“pre post
— |1’ smazx I cmin| *
- |l 5post —1 5post| - LID((Spreﬂ A)

Note that for any x1, 25 = 0, max{zy, x5} > %([El + x9). It then follows from the previous
display that

) ) 1
max{|a + v}, 00e’ + 60| a + v) it 4+ Ui} > S LID(0..

A).

Since §72% and 67" are feasible in the maximization (29), we sce that b > $LID(6%., A),

as needed. To complete the proof, now suppose without loss of generality that

max 'Opost, S.t. 0 € A, dpre = 05| = o0.
(m )

pre

Then, we can replay the argument above replacing 6™** with a sequence of values {§;} such

that I'§; diverges, which gives that b is infinite and the result follows. O

Lemma A.11. Suppose A is convex, and there exists 6 € A such that LID(0ppe, A) =
LID(dpe, A) < 0. Then there exists (a,v) such that b(a, v) = %supgmeA

SUDP5 e LID(0pre, A).
Additionally, for any T and %, EBn~N(5+T, ) [a + U,Bn] _ %(eub + 6, where 6" and 0"
are the upper and lower bounds of the identified set S(6 + 7, A).

pre pre

Proof. Let b (5% ) = <max; l’gpost, st. o€ A,Spre = OF ), where we define b = —w0

pre pre
if 0%, ¢ Apre. Likewise, define b™"(5%.,) = (ming Udpost, S-t. 0 € A, Oppe = 5;,}6), where
we define b™" = o if ;.. ¢ Ay.. Note that A convex implies that 0™ is concave and
b is convex. Thus, —LID(d7,.) = b™"™(d%..) — b™*(05,.) is convex (where we define
LID(o..) = —oo if 65, ¢ Apre). The domain of —LID(05,.) (i.e. the set of values for which
it is finite) is Ay, since it is infinite for 0., ¢ Ay by construction, and by assumption,

LI D(5;Te) is finite for all 6,,. € Ay... Since A is assumed to be convex, Ay is a non-
empty convex set, and thus has non-empty relative interior, so the relative interior of the
domain of —LID is non-empty."’ It follows from Theorem 8.2 in Mau Nam (2019) that

O(—LID) = 0(—b™**) + 3(b™™) where for a convex function f, Jf is the subdifferential

41 The relative interior of a set is the interior of the set relative to its affine hull. See, e.g., Mau Nam
(2019), Chapter 5.
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of(x):={v: f(z)+ v (z—z) < f(x),Vz} and d(—b™*) + O(b™") is the Minkowski sum of
the two subdifferentials.
Additionally, if LID(0,) = SUDS, e, LI D(Spre), then —LID(6.) = inf;

preEApre

LID(y).
Thus, standard results in convex analysis (see, e.g., Theorem 16.2 in Mau Nam (2019)) give
that 0 € (—LID)(0pre) + N(A; Opre), where N(A; 6pre) = {Vpre v;m(gpre — Opre) < 0, nge €
Ayre} is the normal cone to Ay, at d,.. Hence, there exist vectors Upin, Umae. such that for

all Opre € Appe,

O™ (Spre) + Upin (Opre = Opre) < 0™ (Opye) (30)
- bmam@p?‘ti) + Umaa:<5pre 51)7‘6) bmam(épre) (31)
- (T)min + @maac) ( pre — 6p7’e) 0 (32)

The inequalities (31) and (32) together imply that for all 0, € Apye,

bmagg(épm) + Umm(gpre - 5177’6) > "t (6177’6) (3?’)

Now, let v be the vector such that v,.ss = [ and vy = —0pnin. Observe that

maxa + v, 5pre + 15 post = _ INAx (a + v gpre +  max [ 5p08t)

pre pre
seA Spre€lpre SEA Spre=bpre

max
= max a+ vpreépre D (G )
5p're€Ap're

< a+ Uy Opre + 0" (Opre), (34)

where the first equality nests the maximization, the second equality uses the definition of

b and the inequality follows from (33). An analogous argument using (30) yields that

mina + vpreé re + l'gpost = min a+ vpregpre + bmi"(gpre)
6€A 61)7‘EEA1)7‘6
=a+ UpreépTe bmin((spTe)' (35>

Now, it is apparent from equation (29) that

maxa + vpreépm + 1 5post

mina + Upreépre + 7 5post
seA SeA

Y

ba,v) max{

b

which is bounded above by max {a + v),..0pre + 0™ (6pre), —(a + V) Opre + U™ (Opre)) } from

pre
/

the results above. Setting a = —v), .0pre — 3(b™ (8pre) + ™™ (0pre)), this upper bound

pre

reduces to 3™ (0pre) — 0™ (Opre)).  Since LID(Spre, A) = 0™ (pre) — 0™ (dpre) and
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LID(0pre, A) = SUP;  en LID(SWE,A) by assumption, it is then immediate that b <

%SUPSW.ee A L1 D(gpre, A). The inequality in the opposite direction follows from Lemma

pre

A.10. Finally, substituting in the definition of a and v above and simplifying, we see that
B A5 [a + v'ﬁn] = 1'Byost — 5 (0™ (Spre) + ™™ (8pre) ), which from (5) and (6) we see
is the midpoint of the identified set. n

Lemma A.12. Let x,, be the 1 — a quantile of the |N (b, 02)| distribution for b = 0. Then

b+ 0210 < Xa < b+ 021_q)2.

Proof. Since |£| = &, we have that q1_(|€]|€ ~ N (b, 6%)) = q1_o(E]E ~ N (b, 0?)) =
b+ 021_4, which yields the first inequality. For the second inequality, observe that

ql—a(|€| |€ ~N (ba 02)) = ql—a(|€ + b| |§ ~ N(Oa 02))
< bt quall€] 1€~ N (0, 0%) = b+ 021

where the first inequality uses the triangle inequality, and the final equality uses the fact

that a mean-zero normal distribution is symmetric about 0. O

B Additional Simulation Results

This section contains additional simulation results that complement the simulations pre-
sented in the main text. Section B.1 describes the computation of the optimal bound for ex-
pected excess length. Section B.2 contains additional results from the normal data-generating
process considered in the main text. Section B.3 presents results from a non-normal data-
generating process in which the covariance matrix is estimated from the data, which show
that our proposed procedures have (approximate) size control, with similar power curves to

those in the normal simulations.

B.1 Optimal bounds on excess length

We now discuss the computation of optimal bounds on the excess length of confidence in-
tervals that satisfy the uniform coverage requirement (10). In Section 5, we benchmark the
performance of our proposed procedures in Monte Carlo simulations relative to these bounds.

The following result restates Theorem 3.2 of Armstrong and Kolesar (2018) in the nota-
tion of our paper, which provides a formula for the optimal expected length of a confidence

set that satisfies the uniform coverage requirement.
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Lemma B.1. Suppose that A is convex. Let I, denote the set of confidence sets that satisfy

the coverage requirement (10). Then, for any 0* € A, 77 . € RT, and %, positive definite,

0.

I By ot Lo, 5y MO = (L= )B[0(21-0 = Z) = w(21-0 = Z) | Z < 21-a],

where Z ~ N (0, 1), z1_4 is the 1 — « quantile of Z, and

B(b) = sup{l'T| 7€ RT, 30 € A s.t. [ + Lyout — 52, < b?}
w(b) == inf{lI'r |7 e RT,36 € A s.t. |0 + Lyost™ — B*|%, < 0},

1

for B* := 6" + Lpost Ty, and ||z||s = 'S .

ost?

The proof of this result follows from observing that the confidence set that optimally
directs power against (6*, 7% ;) inverts Neyman-Pearson tests of Hy : d € A, 0 = 0 against

Hy : (8, Tpost) = (6%, 7%) for each value . The formulas above are then obtained by
integrating one minus the power function of these tests over . By the same argument, the
optimal excess length for confidence sets that control size is the integral of one minus the
power function over all points § outside of the identified set. Additionally, for any value
6 € S(B,A), the null and alternative hypotheses are observationally equivalent, and so the
most powerful test trivially has size a. It follows that the lowest achievable expected excess
length is (1 —«) - LID(6;,., A) shorter than the lowest achievable expected length, where as

in Section 4, LID denotes the length of the identified set.

Corollary B.1. Under the conditions of Lemma B.1,

inf By e ) [BLC 5] = inf By e s,y [MC)] = (1 - @)LID(5", A),

where EL(C; 5) = MC\S(B,A)) is the excess length of the confidence set C, i.e. the length
of the part of the confidence set that falls outside of the identified set.

Recall that when A is the union of polyhedra (A = (i, A), the identified set is the
union of the identified sets for each of the A;. Thus, any C, that satisfies (10) for A must
also satisfy (10) for each Ay. It follows that the expected excess length for C is bounded
below by the optimal excess length for confidence sets satisfying (10) for Ay for each k.
For As that are unions of polyhedra, we therefore use the largest lower bound implied by
the individual Ay, which is a potentially non-sharp lower bound on the excess length of a
procedure that satisfies (10) for A.
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B.2 Additional Results for Normal Simulations

In the main text, we report efficiency in terms of excess length for the parameter 6 = 7
for ASP (M), ASPPB(M), ASPEM (M) and ARM(M). In this section, we provide additional

simulation results.

Alternative choices of M for ASPEM (M) and ARM(M). The main text reports effi-
ciency in terms of excess length over ASPEM (M) and AFM (M) for M = 1. We now report
additional results for M = 1,2,3. The results are qualitatively similarly, suggesting that
the choice of M does not appear to have a large effect on the performance of our proposed

procedures.

Figure I1: ASPEM (D) and ARM(M): Median efficiency ratios for proposed procedures when
0 = 7 as M varies.
ASPRM(M), 6 =1 A=AMM), 0=,

1.00- 1.00-
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= c
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o O
x x
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c c
% 0.25- % 0.25- —e— C-LF Hybrid - 1
) S 0.
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- 3
0.00- 0.00-
0 1 2 3 0 1 2 3
5.1/oq 8.1/
Note: This figure shows the median efficiency ratio for our proposed confidence sets for # = 7, over

ASPEM (AN ABM (M) and M = 1,2,3. The efficiency ratio for a procedure is defined as the excess length
bound divided by the procedure’s expected excess length. The results for M = 1 are plotted in red, M = 2
are plotted in blue, and M = 3 are plotted in green. The results for the conditional-least favorable hybrid
confidence set (“C-LF Hybrid”) are plotted in the solid line with circles. The results for the conditional
confidence set are plotted in the dashed line with triangles. Results are averaged over 1000 simulations for
each of the 12 papers surveyed, and the median across papers is reported here.

Alternative choice of target parameter. The main text reports efficiency in terms of
excess length for the parameter # = 71. We now report additional results using the average
of post-period treatment effects, 0 = 7,05, as the target parameter.

Figure 12 plots the efficiency results for § = 7, over AP (M) and ASPPB(M). As in
the main text, we conduct these simulations under the assumption of parallel trends and

zero treatment effects (i.e., § = 0), reporting results as M /oy varies.
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Figure 12: Median efficiency ratios for AP (M) and ASPFB(M) when 0 = 7.
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Note: This figure shows the median efficiency ratios for our proposed confidence sets for ASP (M) and
ASPPB(N) when 6 = 7,05. The efficiency ratio for a procedure is defined as the optimal bound divided
by the procedure’s expected excess length. The results for the FLCI are plotted in purple, the results for
the conditional-LF (“C-LF Hybrid”) in blue, and the results for the conditional confidence set are in green.
Results are averaged over 1000 simulations for each of the 12 papers surveyed, and the median across papers
is reported here.

Figure 13 plots the efficiency results for 6 = 7,0 over ASPEM(N[) and ARM(M). As in
the main text, we conduct these simulations under the assumption of zero treatment effects
and a “pulse” pre-trend (i.e., f_; = d_; and 5; = 0 for all ¢ # —1), reporting results for
M =1over é_i/o1 =0,1,2,3.*

42We note that over ASPEM ()]) the median efficiency ratio for our proposed confidence sets is larger than
one for M = 3. For M = 3, the length of the identified set for § = Tpost can be quite large when there are
many post-treatment periods (e.g., as mentioned in the main text, 5 papers in the survey have 7' > 10), and
so this behavior occurs due to computational constraints on the grid size for the underlying test inversion.
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Figure 13: Median efficiency ratios for ASPEM(Af) and AFM (M) when 0 = T4
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Note: This figure shows the median efficiency ratios for our proposed confidence sets for ASPEM (M) and
ARM (M) when 6 = Tpps; and M = 1. The efficiency ratio for a procedure is defined as the optimal bound
divided by the procedure’s expected excess length. The results for the conditional-least favorable (“C-LF”)
hybrid in blue and the results for the conditional confidence set in green. Results are averaged over 1000
simulations for each of the 12 papers surveyed, and the median across papers is reported here.
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B.3 Non-normal simulation results with estimated covariance ma-
trix

In the main text, we presented simulations results where B is normally distributed and its
covariance matrix is treated as known. In this section, we present Monte Carlo results using
a data-generating process in which B is not normally distributed and the covariance matrix
is estimated from the data. Specifically, we consider simulations based on the empirical
distribution in Bailey and Goodman-Bacon (2015). We find that all of our procedures achieve
(approximate) size control, and our results on the relative power of the various procedures

are quite similar to those presented in the main text.

B.3.1 Simulation design

The simulations are calibrated using the empirical distribution of the data in Bailey and
Goodman-Bacon (2015).%3 Let B , 3 denote the original, estimated event-study coefficients
and variance-covariance matrix from the event-study regression in the paper. We simulate
data using a clustered bootstrap sampling scheme at the county level (i.e. the level of
clustering used by the authors in their event-study regression). For each bootstrap sample
b, we re-estimate the event-study coefficients Bb and the variance-covariance matrix 3, also
using the clustering scheme specified by the authors. We then re-center the bootstrapped
coefficient so that under our simulated data-generating process either parallel trends holds
(i.e., B,fe"te”d = Bb—B) or the “pulse” pre-trend holds (i.e., Bg@”tered = B,—B+8_1xe_; where
e_y is the (T + T)-dimensional vector with one in t = —1 entry and zeroes everywhere else).
We construct our proposed confidence sets for bootstrap draw b using the pair (Bgente”ed, i]b)

As in the main text, we focus on the performance of our proposed confidence sets for
ASP(M), ASPPB(M) under parallel trends and ASPEM(A) AFM(DM) under the “pulse”
pre-trend. The parameter of interest in these simulations is the causal effect in the first post-
period (6 = 71). For ASP(M) and ASPPB(M), we report the performance of the FLCI, con-
ditional confidence set, and conditional-least favorable confidence set. For ASPEM (M) and
ABM (M), we report the performance of the conditional confidence set and the conditional-

least favorable confidence set. All results are averaged over 1000 bootstrap samples.

43Gince implementing the bootstrap in practice is logistically challenging, we do so for one paper rather
than the full 12 papers in the survey. We chose the first paper alphabetically to minimize concerns about
cherry-picking.
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B.3.2 Size control simulations

Table 2 reports the maximum rejection rate of each procedure over a grid of parameter values
6 within the identified set S(8,A) for A = ASP(M) and A = ASPPB(M) under parallel
trends (i.e., 8 = 0). We report results for M /oy = 0,1,2,3,4,5. The table shows that all

our procedures approximately control size, with null rejection rates not exceeding 0.08.

A M /o1 Conditional FLCI C-LF Hybrid

ASD(M)
0 0.073 0.078 0.069
1 0.046 0.061 0.044
2 0.038 0.072 0.037
3 0.040 0.072 0.038
4 0.049 0.072 0.045
5 0.059 0.072 0.051

ASDPB(M)
0 0.079 0.078 0.074
1 0.052 0.047 0.048
2 0.046 0.055 0.042
3 0.051 0.058 0.046
4 0.055 0.058 0.051
5 0.059 0.058 0.057

Table 2: Maximum null rejection probability over the identified set S(3, A) for A = AP (M)
and A = ASPPB( M) under parallel trends (i.e., 8 = 0) using the empirical distribution from
Bailey and Goodman-Bacon (2015).

Table 3 reports the maximum rejection rate of the conditional test and the conditional-
least favorable test over a grid of parameter values 6 within the identified set S(8,A) for
A = ASPEM (N and A = ARM (M) under the “pulse” pre-trend (i.e., 1 = d_; and 5, = 0
for all t # —1). We report results for M = 1 and d_;/0; = 1,2,3. The table shows that
all our procedures approximately control size, with worst-case null rejection probability of
0.058.

B.3.3 Comparison with normal simulations

We next compare results from the non-normal simulations with estimated covariance dis-
cussed above to the normal model simulations the main text, in which /3 is normal and ¥ is
treated as known.

Figures [4-15 shows the rejection probabilities at different values of the parameter 6 using
both simulation methods for ASP (M), ASPPB(M) at M /oy = 0,5 respectively. The results

are quite similar for all values of M /oy considered, and we thus omit the intermediate values.
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A d_1/01 Conditional C-LF Hybrid

ASDEM ()
1 0.009 0.008
2 0.037 0.035
3 0.058 0.054
ARM(M)
1 0.005 0.005
0.017 0.016
3 0.024 0.023

Table 3: Maximum null rejection probability over the identified set S(8,A) for A =
ASPEM (N and A = AFM(M) under the “pulse” pre-trend (ie., 3.1 = 6_; and B, = 0
for all t # —1) and M = 1 using the empirical distribution from Bailey and Goodman-Bacon
(2015). We report results for _; /o1 = 1,2, 3.

The estimated average rejection rates of each procedure are quite similar in the non-normal
simulations and the normal simulations across each choice of A. As a result, the relative
rankings of the procedures in terms of power are the same in the non-normal simulations
as in the normal simulations discussed in the main text. Similarly, Figures [6-17 shows the
rejection probabilities at different values of the parameter 6 using both simulation methods
for ASPEM(NT) ABM(M) at §_y /0y = 1,2,3 respectively and M = 1.

A-25



Figure [4: Comparison of rejection probabilities using bootstrap and normal simulations.
Results are shown for § = 71, and each choice of A = AP (M), ASPPB(M), and M /oy = 0.
The average rejection rate for the non-normal simulations are in red and the average rejection
rate for the normal simulations are in blue; the dashed black lines indicate the identified set
bounds. Results are averaged over 1000 simulations.
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Figure I5: Comparison of rejection probabilities using bootstrap and normal simulations.
Results are shown for § = 71, and each choice of A = AP (M), ASPPB(M), and M /oy = 5.
The average rejection rate for the non-normal simulations are in red and the average rejection
rate for the normal simulations are in blue; the dashed black lines indicate the identified set
bounds. Results are averaged over 1000 simulations.
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Figure 16: Comparison of rejection probabilities using bootstrap and normal simulations for

ASPEM(NTY and ARM(M). Results are shown for § = 7y, M = 1 and 6_y/0; = 1. The
average rejection rate for the non-normal simulations are in red and the average rejection
rate for the normal simulations are in blue; the dashed black lines indicate the identified set
bounds. Results are averaged over 1000 simulations.
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Figure I7: Comparison of rejection probabilities using bootstrap and normal simulations for

ASPEM(NTY and ARM(M). Results are shown for § = 7y, M = 1 and 6_y/0; = 3. The
average rejection rate for the non-normal simulations are in red and the average rejection
rate for the normal simulations are in blue; the dashed black lines indicate the identified set
bounds. Results are averaged over 1000 simulations.
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C Comparing Confidence Sets to Empirical Analogs to
the Identified Set

In this section we report the estimated identified set, S (B , A), for our applications, in addition
to the confidence sets described in the paper. We show below that the estimated identified
set is respectively Hausdorff consistent and inner consistent for the true identified set for
the Benzarti and Carloni (2019) and Lovenheim and Willen (2019) applications. Thus,
comparing the estimated identified set to the confidence sets is informative about the extent
to which the width of the confidence sets is driven by sampling uncertainty versus the width
of the identified set.

Empirical Results. Figure I8 shows the estimated identified sets for the Benzarti and
Carloni application. The figure suggests that both sampling uncertainty and the length of
the identified set can be important. In the left panel, for example, the confidence set is 78%
larger than the estimated identified set for M = 0.5. This number decreases as M increases
(and the estimated identified set becomes longer), reaching about 40% at M = 2.

Figure 19 shows the estimated identified sets for the Lovenheim and Willen application.
We note that the estimated identified set is empty for values of M close to zero.** Intuitively,
the estimated identified set can be empty when A = ASP (M) for M ~ 0, since if § € AP (M)
for M ~ 0, the true pre-trend f3,,. must be very close to linear. However, even if [3,,. is
exactly linear, the sample analog Bpre will typically be non-linear owing to sampling variation,
leading the estimated identified set to be empty. This occurs for values of M less than 1.49
for the specification for men and 2.01 for the specification for women, as shown in Figure 19.
However, we note that when A = AP (M), the length of the true identified set (assuming
it is non-empty) is only a function of M and not of §: specifically, for = 7;, the identified
set has length ¢(t + 1) M. We can thus compare the length of our confidence set relative to
the length of the true identified set for each value of M (even though the true identified set
is unknown). When M = 0.005, for example, the confidence sets are 3.96 and 2.59 times
longer than the length of the identified set for women and men, respectively, suggesting
that the sampling variation is large relative to the length of the identified set. The relative
importance of the sampling variation decreases as M increases, and thus the identified set
widens. When M = 0.04, for example, these ratios are 1.59 and 1.43, and they decrease to
1.28 and 1.26 when M = 0.1.

44We expand the range of the z-axis relative to the main text to show larger values of M, where the
estimated identified set is non-empty.
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Consistency proofs. We next formally establish the Hausdorff and inner consistency of
the estimated identified set in our applications. We first review the notions of Hausdorff
and inner consistency for set estimators. For a point 2 € R and set B < R, let d(z, B) :=

infpep | — b|. For two non-empty sets B and C, the Hausdorff metric is then defined as

dy(B,C) := max{supd(b,C), supd(c, B) },
beB ceC
and we define dy(B,C) = oo if either A or B is empty. An estimator B is said to be
Hausdorff consistent for a non-empty set B if dH(B, B) —, 0. Likewise, we say that B is
inner consistent for B if sup,_z d(b, B) —, 0, where sup,_5 d(b, B) = 0 if B = @. Intuitively,
Hausdorff consistency requires that asymptotically every point in B is close to a point in B
and vice versa; whereas inner consistency requires only that every point in B is close to a

point in B.

Proposition C.1. Suppose 0 = 7, for somet =1,...,T or§ = T~ (7 + ... + 7p). Assume
that j3 —, B, where B satisfies (3) with 6 € A.

1. If A = ABM(D]), then S(B3,A) is Hausdorff consistent for S(5, 7).

2. If A = ASP(M), then S(3,A) is inner consistent for S(8, A).

Proof. For ease of exposition, we provide a proof for the case where § = 11; the cases where
0 =7 fort>1o0rf=T7"'r +..+7p) can be handled analogously.
When A = ARM (M) observe that

A

S(B,A) =+ MI?%( Bosr — Byl
Since /3 —, 3, it follows from the continuous mapping theorem that
Bi + Mriagc |Bs+1 - Bs| —p b1+ MI?33<|65+1 — Bl

so that the upper bound of S (B, A) converges in probability to the upper bound of S(5, A).
Convergence of the lower bound can be shown analogously, from which the result follows.
When A = AP (M), observe that

~ ~

(ﬁl + ﬂfl) + M if Bpre € A;m"e

S(5,A) = : :
1%} if Bpre & Apre

A-31



where recall that Ape = {0pre 1 I0post S-t. (0,6, 0p0)" € A} (Note that we did not need
to consider the case where Bpre ¢ Ay when A = ARM gince in that case A, = RT.) It
follows that S (B, A) < (Bl - B,l) + M. However, by the continuous mapping theorem, the
upper and lower bounds of (Bl + B_l) + M converge in probability to 5, + f_; = M, which
are the upper and lower bounds of S(3,A), from which the inner consistency of S (5’ WAYI

immediate. O

Figure I8: Comparison of confidence sets and estimated identified set for Benzarti and
Carloni (2019) application
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Figure 19: Comparison of confidence sets and estimated identified sets for Lovenheim and
Willen (2019) application
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