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Abstract

Economists are often interested in the mechanisms by which a particular treatment
affects an outcome. This paper develops tests for the “sharp null of full mediation”
that the treatment D operates on the outcome Y only through a particular conjectured
mechanism (or set of mechanisms) M . A key observation is that if D is randomly
assigned and has a monotone effect on M , then D is a valid instrumental variable
for the local average treatment effect (LATE) of M on Y . Existing tools for testing
the validity of the LATE assumptions can thus be used to test the sharp null of full
mediation when M and D are binary. We develop a more general framework that
allows one to test whether the effect of D on Y is fully explained by a potentially
multi-valued and multi-dimensional set of mechanisms M , allowing for relaxations of
the monotonicity assumption. We further provide methods for lower-bounding the size
of the alternative mechanisms when the sharp null is rejected. An advantage of our
approach relative to existing tools for mediation analysis is that it does not require
stringent assumptions about how M is assigned; on the other hand, our approach helps
to answer different questions than traditional mediation analysis by focusing on the
sharp null rather than estimating average direct and indirect effects. We illustrate the
usefulness of the testable implications in two empirical applications.
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1 Introduction

Social scientists are often able to identify the causal effect of a treatment D on some outcome
of interest Y , either by explicitly randomizing D or using some “quasi-experimental” variation
in D. Once the causal effect of D on Y is established, a natural question is why does it work,
i.e. what are the mechanisms by which D affects Y ?

To fix ideas, consider the setting of Bursztyn, González and Yanagizawa-Drott (2020),
which will be one of our empirical applications below. The authors show that the vast
majority of men in Saudi Arabia under-estimate how open other men are to women working
outside of the home. They then run an experiment in which some men are randomized
to receive information about other men’s beliefs. At the end of the experiment, all of the
men are given the choice between signing their wives up for a job-search service or taking
a gift card. The authors observe that the treatment increases the probability that men
sign their wives up for the job-search service, and also increases the probability that their
wives apply for and interview for jobs over the subsequent five months. A natural question
in interpreting these results is then whether the increase in longer-run outcomes (e.g. job
applications) is explained by the short-run sign-up for the job-search service, or whether the
information treatment also affects labor market outcomes through other longer-run changes
in behaviors.

The literature on mediation analysis (see Huber (2019) for a review) provides formal
methodology for disentangling how much of the average effect of a treatment D (e.g. in-
formation about others’ beliefs) on an outcome Y (e.g. job applications) is explained by
the indirect effect through some potential mediator M (e.g. job-search service sign-up). A
challenge, however, is that even if the treatment D is randomly assigned, it will often be
the case that the mediator of interest M is not randomly assigned.1 Existing approaches
typically make strong assumptions that allow for the identification of the causal effect of
M on Y (see Related Literature below). A common assumption in the biostatistics litera-
ture, for example, is that M is as good as randomly assigned given D and some observable
characteristics. This assumption will often be restrictive in applications—for example, we
may worry that sign-up for the job-search service is correlated with unobservables related to
women’s labor supply.

In this paper, we develop methodology that sheds light on mechanisms without having to
impose strong assumptions to identify the effect of M on Y . We make progress by considering
an easier question than what is typically studied in the literature on mediation analysis, but

1One exception is “mechanism experiments” (Ludwig, Kling and Mullainathan, 2011), where the researcher
explicitly randomizes an M of interest. Our focus is on settings where M is not randomized and potentially
endogenous.
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one that we think will still be informative in many applications. Rather than trying to
identify how much of the average effect is explained by the indirect effect through M , we
start by testing what we refer to as the sharp null of full mediation: is the effect of D on
Y fully explained through its effect on M? In our motivating application, the sharp null
asks whether the effect of treatment on job applications is fully explained by the short-run
take-up of the job-search service. More precisely, letting Y pd,mq be the potential outcome as
a function of treatment d and mediator m, the sharp null posits that Y pd,mq depends only
on m. If we can reject this null in our motivating example, then we can conclude that the
treatment affects long-run outcomes through some change in behavior other than job-search
service sign-up. We develop tests for this sharp null, along with measures of the extent to
which it is violated.

We consider two key assumptions in this framework. First, we suppose throughout that
D is as good as randomly assigned, i.e. D is independent of the potential outcomes Y p¨, ¨q

and potential mediators Mp¨q. In our motivating example, this is guaranteed by design
since D is randomly assigned. Second, for some of our results, we impose the monotonicity
assumption that the potential mediator Mpdq is increasing in d. In our motivating example,
this imposes that providing men with information that other men are more open to women
working outside of the home can only increase whether they sign up for the job-search
service (in our main analysis, we restrict attention to the majority of men who initially
under-estimate others’ openness, so the information plausibly updates beliefs in a common
direction). We first consider the setting where monotonicity holds, and then consider a more
general framework that allows for relaxations of monotonicity.

A key observation is that under the sharp null of full mediation and the independence and
monotonicity assumptions just described, the treatment D is a valid instrumental variable
for the local average treatment effect (LATE) of M on Y . In the case of binary D and
binary M , the LATE assumptions are known to have testable implications (Balke and Pearl,
1997; Kitagawa, 2015; Huber and Mellace, 2015; Mourifié and Wan, 2017). Existing tools
for testing the LATE assumptions can thus be used “off-the-shelf” for testing the sharp null
of full mediation when D and M are binary, as we describe in more detail in Section 2. In
our motivating example, the testable implications of the sharp null appear to be violated
(significant at the 5% level), and thus we can conclude that the effect of the information
treatment does not operate entirely through job-search service sign-up.

While existing tools can be used to test the sharp null in the case of a binary mediator M
and a monotonicity assumption, several questions remain. First, we may be interested in test-
ing that the treatment effect is explained by a non-binary M , or by a set of mechanisms—can
the approach above be applied when M is non-binary and potentially multi-dimensional?
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Second, in many applications we may be concerned about violations of the monotonicity
assumption—can one test the sharp null of full mediation under relaxations of this assump-
tion? Third, if we reject the sharp null then we know that mechanisms other than M must
matter, but how large are the alternative mechanisms?

In Section 3, we develop a general framework that enables us to tackle all of these ques-
tions. We allow the mediator M to take on multiple values and to have multiple dimensions,
so long as it has finite support tm0, . . . ,mK´1u.2 We also allow the researcher to place ar-
bitrary restrictions on θlk “ P pMp0q “ ml,Mp1q “ mkq, the fraction of individuals with
Mp0q “ ml and Mp1q “ mk. The monotonicity assumption in the case with scalar M then
corresponds to the special case where one imposes that θlk “ 0 if ml ą mk. Our framework
allows the researcher to impose weaker versions of this requirement—e.g. by allowing for up
to d share of the population to be defiers—or to completely eliminate the monotonicity re-
quirement altogether. Our framework also allows for a variety extensions of monotonicity to
the setting with multi-dimensional M—e.g. a partial monotonicity assumption that imposes
that each dimension of M is increasing in d.

We derive testable implications of the sharp null of full mediation in this general setting.
These testable implications (formalized in Section 3.1) imply that for any set A and any
value of the mediator mk, the difference between P pY P A,M “ mk | D “ 1q and P pY P

A,M “ mk | D “ 0q is bounded above by the number of “compliers” with Mp0q “ ml and
Mp1q “ mk for l ‰ k. The intuition for this is that under the sharp null, an “always-taker”
with Mp1q “ Mp0q “ mk should have the same outcome under both treatment and control.
Any differences between P pY P A,M “ mk | D “ 1q and P pY P A,M “ mk | D “ 0q are
thus driven entirely by “compliers” who have M “ mk only under one of the treatments. If the
difference between these probabilities is larger than the number of compliers, it must be that
some always-takers were in fact affected by the treatment, violating the sharp null. When
M is non-binary, a complication arises because the shares of always-takers and compliers,
denoted by θ, are only partially-identified. The testable implication is therefore that there
exists some shares θ consistent with the observable data such that the inequalities described
above are satisfied. Since the identified set for θ is characterized by linear inequalities, it is
simple to verify whether such a θ exists by solving a linear program; we also show that the
solution to the linear program has a closed-form solution in the case where M is fully-ordered.
We further show that these testable implications are sharp in the sense that they exhaust
all of the testable information in the data: if they are satisfied, there exists a distribution of

2An important limitation of our current approach is that it only applies to discrete M . See Remark 3
for discussion of when a continuous M can be discretized, and Section 6 regarding how the results might be
extended to settings with continuous M .
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potential outcomes (and potential mediators) consistent with the observable data such that
the sharp null holds.

We also provide lower bounds on the extent to which the sharp null is violated. In
particular, our results imply lower bounds on the fraction of the k-always-takers who are
affected by the treatment, νk “ P pY p1,mkq ‰ Y p0,mkq | Mp1q “ Mp0q “ mkq. The
lower bounds on the νk are informative about the prevalence of alternative mechanisms:
if the lower bound on νk is large, then alternative mechanisms matter for a high fraction
of k-always-takers. We also derive bounds on the average direct effect for k-always-takers,
ADEk “ ErY p1,mkq ´ Y p0,mkq | Mp1q “ Mp0q “ mks. In the special case where M is
binary and one imposes monotonicity, our bounds on ADEk match those derived in Flores
and Flores-Lagunes (2010). As noted by Flores and Flores-Lagunes (2010), these bounds
are equivalent to the familiar Lee (2009) bounds, treating M as the “sample selection”. Our
results in Section 3.2 generalize these bounds to the case where M is multi-valued and/or
multi-dimensional, and allow for relaxations of monotonicity.

In Section 4, we show how one can conduct inference on the sharp null of full mediation,
exploiting results from the literature on moment inequalities (Andrews, Roth and Pakes,
2023; Cox and Shi, 2022; Fang, Santos, Shaikh and Torgovitsky, 2023). In Section 5, we
illustrate the usefulness of our results in two empirical applications, namely our motivating
example of Bursztyn et al. (2020), as well as Baranov, Bhalotra, Biroli and Maselko (2020)’s
study of the impacts of cognitive behavioral therapy on women’s financial empowerment.

Related Literature. Our work relates to a large literature on mediation analysis. We
briefly overview a few relevant strands of the literature, with a non-exhaustive list of cita-
tions, and refer the reader to VanderWeele (2016) and Huber (2019) for more comprehensive
reviews. Much of the mediation analysis literature focuses on identification of average di-
rect effects and indirect effects (e.g. Robins and Greenland, 1992; Pearl, 2001).3 A key
challenge is that even if the treatment D is randomized, it is typically the case that the
mediator M is not, and thus it is difficult to identify the effect of M on Y (conditional on
D). Various strands of the literature have identified the effect of M on Y by assuming condi-
tional unconfoundedness for M (e.g. Imai, Keele and Yamamoto, 2010), using an instrument
for M (e.g. Frölich and Huber, 2017), or adopting difference-in-differences strategies (e.g.
Deuchert, Huber and Schelker, 2019). In contrast, we focus on learning about mechanisms
without imposing assumptions that identify the effect of M on Y . The question we try
to answer is different from most of the existing literature, however: rather than focus on

3The literature further distinguish between natural direct/indirect effects and controlled direct/indirect
effects.
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average direct and indirect effects, we start by testing the sharp null that the effect of D
on Y is fully explained by a particular mechanism (or set of mechanisms) M .4 We further
provide lower-bounds on the extent to which M does not fully explain the effect of D on
Y by lower-bounding the treatment effects for always-takers who have the same value of M
regardless of treatment status. We view our work as complementary to much of the litera-
ture on mediation analysis, as we impose different assumptions but also address a different
question.

A key observation in our paper is that under the sharp null of full mediation, D is an
instrument for the effect of M on Y . Thus, in the setting where M is binary, existing tools
for testing instrument validity with binary endogenous treatment can be used “off-the-shelf”
to test the sharp null, both with monotonicity (Kitagawa, 2015; Huber and Mellace, 2015;
Mourifié and Wan, 2017) and without monotonicity (Balke and Pearl, 1997; Wang, Robins
and Richardson, 2017; Kédagni and Mourifié, 2020).5 One of the key technical contributions
of our paper is to derive sharp testable implications of the sharp null in the setting where M

is potentially multi-valued or multi-dimensional, and where one places arbitrary restrictions
on the type shares (e.g. monotonicity or relaxations thereof). Based on the equivalence
between testing the sharp null and testing instrument validity described above, our results
immediately imply sharp testable implications for settings with a binary instrument and
multi-valued treatment, which may be of independent interest. Our testable implications
build on the work of Sun (2023), who derived non-sharp testable implications of instrument
validity with multi-valued treatments under monotonicity.6

Our paper also relates to the literature on principal stratification (Frangakis and Rubin,
2002; Zhang and Rubin, 2003; Lee, 2009). In particular, note that the sub-population of
k-always takers corresponds to the so-called principal stratum with Mp1q “ Mp0q “ mk.
As noted above, in the case where M is binary, our bounds on the average effect for the

4Miles (2023) also considers a sharp null. However, his sharp null is that either Y pd,mq depends only on
d or Mpdq does not depend on d, whereas we consider the sharp null that Y pd,mq depends only on m. His
focus is also different: rather than testing this sharp null, he considers which measures of the indirect effect
are zero when his sharp null is satisfied.

5Wang et al. (2017) consider tests of instrument validity when instrument Z, treatment D, and outcome
Y are all binary, and one does not impose monotonicity. They observe that the testable implications imply
lower bounds on the average controlled direct effect (ACDE) of Z on Y . Although their focus is testing
instrument validity, they note in the conclusion that such lower bounds might also be used for “explaining
causal mechanisms” in experiments. This observation is thus a precursor to the connections between tests
for instrument validity and testing mechanisms derived in the more general setting in our paper.

6Another related paper is Kédagni and Mourifié (2020), who derive testable implications of instrument
validity with potentially multi-valued treatments, without monotonicity. Their testable implications assume
a weaker notion of independence, however, which when mapped to our context would imply that D is
independent of Y p¨, ¨q but not Mp¨q. Under this weaker notion of independence, their testable implications
are sharp in the special case of binary treatment and outcome, but may not be sharp otherwise.
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always-takers matches those in the aforementioned papers. Our primary focus, however, is
on testing the sharp null of full mediation, which implies that the fraction of always-takers
affected should be zero (a Fisherian sharp null), which is stronger than the weak null of a
zero average effect. Moreover, the results in the literature on principal stratification typically
focus on the case where M is binary, whereas our results extend to the case with multi-valued
M .

Finally, we note that in empirical economics, mechanisms are often studied more in-
formally, rather than using the formal tools for mediation discussed above. One common
approach is to show the effects of D on a variety of intermediate outcomes, and to conjec-
ture that a particular intermediate outcome M may be an important mechanism if D has
an effect on M (see our application to Baranov et al. (2020) below for an example). The
tools developed in this paper give formal methodology for testing the completeness of these
conjectures: is the data consistent with the hypothesized M fully explaining the treatment
effect, and if not, how important are alternative mechanisms? A second common approach
for evaluating mechanisms is heterogeneity analysis: is the treatment effect on Y larger in
observable subgroups of the population for which the effect of D on M is larger? Although
heterogeneity is often analyzed informally, this approach is sometimes formalized with an
over-identification test that evaluates the null that, across subgroups defined by covariate
cells, the conditional average treatment effect of D on Y is linear in the conditional average
treatment effect of D on M (e.g. Angrist, Pathak and Zarate, 2023; Angrist and Hull, 2023).
This approach provides a valid test of our sharp null under the additional assumption that
that the effect of M on Y is constant across sub-groups. By contrast, we derive testable
implications of the sharp null that do not assume constant effects and do not require the
presence of covariates.7

Set-up and Notation. Let Y denote a scalar outcome, D a binary treatment, and M P

Rp a p-dimensional vector of mediators with K support points, m0, ...,mK´1. We denote
by Y pd,mq the potential outcome under treatment d and mediator m. Likewise, Mpdq

denotes the potential mediator under treatment d. The researcher observes pY,M,Dq “

pY pD,MpDqq,MpDq, Dq „ P .
7Moreover, our results indicate that the typical over-identification test does not exploit all the information

in the data even under the assumption of constant effects: not only can one test the relationship of the average
effects across covariate cells, but under the sharp null the restrictions that we derive should also hold within
covariate cells.
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2 Special Case: Binary Mediator

We first consider the special case with a binary mediator M , which helps us to develop
intuition and illustrate connections to the existing literature on testing instrument validity.
In the notation just introduced, this corresponds to K “ 2, with m0 “ 0 and m1 “ 1, so
that M P t0, 1u.

To fix ideas, consider the setting of Bursztyn et al. (2020). The authors conduct a
randomized controlled trial (RCT) in Saudi Arabia focused on women’s economic outcomes.
Their analysis is motivated by the descriptive fact that at baseline in their experiment, the
vast majority of men in Saudi Arabia under-estimate how open other men are to allowing
women to work outside the home. After eliciting beliefs, they randomly assign a treated
group of men to receive information about the other men’s opinions. At the end of the
experiment, both treated and untreated men choose between signing their wives up for a
job-search service or taking a gift card. Bursztyn et al. (2020) find that the treatment has a
positive effect on enrollment in the job-search service and on longer-run economic outcomes
for women, such as applying and interviewing for jobs.

An important question in interpreting these results is whether the treatment increased
long-run labor market outcomes solely by increasing take-up of the job-search service, or
whether the information led men to change behavior in other ways. This question is im-
portant for understanding what might happen if one were to provide men with information
about others’ beliefs without offering the opportunity to sign up for the job-search service.
Bursztyn et al. (2020) write (p. 3017):

It is difficult to separate the extent to which the longer-term effects are driven
by the higher rate of access to the job service versus a persistent change in
perceptions of the stigma associated with women working outside the home.

The authors provide some indirect evidence that the effects may not operate entirely through
the job-search service—for example, there are effects on men’s opinions in a follow-up
survey—but they cannot directly link these long-run changes in opinions to economic out-
comes. In what follows, we will show that in fact there is information in the data that
is directly informative about the question of whether the effects on long-run labor market
outcomes are driven solely by the job-search service.

For notation, let D be a binary indicator for receiving the information treatment, M

a binary variable indicating job-search service sign-up, and Y a binary variable indicating
applying for jobs three to five months after the experiment (i.e., a longer-term labor supply
outcome). We let Y pd,mq denote whether a woman would apply for jobs as a function
of treatment status d and job-search service sign-up m, and let Mpdq denote job-search
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service signup as a function of treatment status. Since treatment is randomly assigned, it
is reasonable to assume that it is independent of the potential outcomes and mediators, i.e.
D KK pY p¨, ¨q,Mp¨qq. For our analysis in this section, we will also impose the monotonicity
assumption that receiving the information treatment weakly increases job-search service sign-
up, so that Mp1q ě Mp0q (almost surely). To make this assumption reasonable, we restrict
our analysis to the majority of men who prior to the experiment under-estimate other men’s
openness, so that all men are provided with information that other men are more open
than they initially expected, which we expect will increase job-search service sign-up. In
the subsequent sections, we will show how this monotonicity assumption can be relaxed, but
imposing it will make it easier to highlight the connections to instrumental variables.

We now formalize the null hypothesis that the information treatment only affects long-
run outcomes through its effect on job-search service sign-up. In particular, we say that the
sharp null of full mediation is satisfied if

Y pd,mq “ Y pmq almost surely, for all pd,mq
1

P t0, 1u ˆ t0, 1u, (1)

i.e. the treatment impacts the outcome only through its impact on M . If the sharp null
holds, signing up for the job-search service is the only mechanism that matters for long-run
job applications. On the other hand, if we reject the sharp null, there is evidence that other
mechanisms play a role for at least some people—i.e., there is some impact of changes in
beliefs on long-run outcomes that does not operate purely through sign-up for the job-search
service at the end of the experiment.

Our first main observation is that if the sharp null holds (together with our assumptions
of independence and monotonicity), then D is a valid instrument for the LATE of M on Y .
This implies that testing the sharp null in this setting is equivalent to testing the validity
of the LATE assumptions when both the treatment and instrument are binary. However,
prior work has shown that in settings with a binary instrument and treatment, the LATE
assumptions have testable implications (Kitagawa, 2015; Huber and Mellace, 2015; Mourifié
and Wan, 2017), and thus such tools can be used to test the sharp null.8 Applying the results
in Kitagawa (2015), with M playing the role of treatment and D the role of instrument, we
obtain the following sharp testable implications:

P pY P A,M “ 0 | D “ 0q ě P pY P A,M “ 0 | D “ 1q and

P pY P A,M “ 1 | D “ 1q ě P pY P A,M “ 1 | D “ 0q,
(2)

8More precisely, these tests are joint tests of the sharp null along with the independence and monotonicity
assumptions. However, if we maintain that the latter two hold, then any violations must be due to violations
of the sharp null. We explore relaxations of the monotonicity assumption in subsequent sections.
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for all Borel sets A.
To understand where these testable implications come from, observe that an individual

with M “ 0, D “ 0 must either be a “never-taker” who would not enroll in the job-search
service regardless of treatment (Mp0q “ Mp1q “ 0) or a “complier” who would only enroll in
the job-search service when receiving treatment (Mp1q “ 1,Mp0q “ 0). It follows that

P pY P A,M “ 0 | D “ 0q
looooooooooooooomooooooooooooooon

Observable probability
for control units

“ P pG “ ntqP pY p0, 0q P A | G “ ntq
loooooooooooooooooooooomoooooooooooooooooooooon

Probability of being an NT with Y p0, 0q P A

`P pG “ cqP pY p0, 0q P A | G “ cq
loooooooooooooooooooomoooooooooooooooooooon

Probability of being a C with Y p0, 0q P A

,

where G P tat, c, ntu denotes an individual’s “type”. On the other hand, if an individual has
M “ 0, D “ 1, then they must be a never-taker. Thus, we have that

P pY P A,M “ 0 | D “ 1q
looooooooooooooomooooooooooooooon

Observable probability
for treated units

“ P pG “ ntqP pY p1, 0q P A | G “ ntq
loooooooooooooooooooooomoooooooooooooooooooooon

Probability of being an NT with Y p1, 0q P A

.

Under the sharp null, however, Y p1, 0q “ Y p0, 0q, and thus the first term on the right-hand
side in each of the previous two displays is the same. It follows that

P pY P A,M “ 0 | D “ 0q ´ P pY P A,M “ 0 | D “ 1q
looooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooon

Difference in observable probabilities

“ P pG “ cqP pY p0, 0q P A | G “ cq
loooooooooooooooooooomoooooooooooooooooooon

Probability of being a C with Y p0, 0q P A

ě 0,

which gives the first testable implication in (2). Intuitively, under the sharp null, the potential
outcome can be written simply as Y pmq. The first observable probability, P pY P A,M “ 0 |

D “ 0q, is the fraction of people who are either a never-taker or a complier with Y p0q P A,
whereas the second observable probability, P pY P A,M “ 0 | D “ 1q, is the fraction of
people who are a never-taker with Y p0q P A. Thus, the first observable probability must
be larger. The second implication in (2) can be derived analogously using the fact that the
fraction of people who are either always-takers or compliers with Y p1q P A must be larger
than the fraction of people who are always-takers with Y p1q P A.

Since Y is binary in our example, an implication of the inequalities in (2) from setting
A “ t1u is

P pY “ 1,M “ 0 | D “ 0q ě P pY “ 1,M “ 0 | D “ 1q.

That is, there should be more women who apply for jobs and don’t sign up for the job-search
service in the control group than the treated group. However, as shown in Figure 1, the
empirical distribution shows that the opposite is true: there are more women who apply
for jobs and don’t sign up for the job-search service in the treated group (P̂ pY “ 1,M “

0 | D “ 1q ą P̂ pY “ 1,M “ 0 | D “ 0q), indicating a violation of the sharp null. These
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Figure 1: Illustration of Testable Implications in Bursztyn et al. (2020)

Note: This figure shows estimates of the probabilities P pY “ y,M “ 0 | D “ dq for d “ 0, 1 and y “ 0, 1
in the application to Bursztyn et al. (2020). For example, P pY “ 1,M “ 0 | D “ 0q is the probability that
one both applies for a job and does not sign up for the job-search service conditional on being in the control
group. Under the sharp null of full mediation, it should be that these probabilities are higher in the control
group, i.e. P pY “ y,M “ 0 | D “ 0q ě P pY “ y,M “ 0 | D “ 1q for y “ 0, 1. We see, however, that this
inequality is violated in the empirical distribution for y “ 1: more women apply for jobs and don’t use the
job-search service in the treated group, as indicated by the black arrow.

differences are statistically significant at the 5% level, as we will describe in more detail in
Section 5 below after we describe methods for conducting inference.

The data thus reject the sharp null hypothesis that the impact of the information treat-
ment on job applications operates purely through job-search service sign-up. In particular,
the data suggest that some never-takers must have their outcome affected by the treatment.
We can thus conclude that there is some impact of changes in beliefs on job applications
that does not operate mechanically through signing up for the job-search service.

The analysis so far shows that tools originally developed for testing the LATE assump-
tions can be useful for testing hypotheses about mechanisms. However, several questions
remain. First, our rejection of the null implies that the treatment affects the outcome
through mechanisms other than job-search service sign-up, but how big are these alternative
mechanisms? Second, our analysis relied on the monotonicity assumption that treatment
increases job-search service sign-up, but what if we would like to relax this assumption?
Third, while our motivating example had a binary M , in many cases we may be interested
in testing that the treatment is explained by a non-binary mechanism, or by the combination
of multiple mechanisms.

In the subsequent section, we develop a general theoretical framework that allows us
to address all of these questions. Our framework accommodates mechanisms M that are
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potentially multi-valued or multi-dimensional, and allows for relaxations of the monotonicity
assumption. Further, in addition to deriving testable implications of the sharp null, we also
derive lower bounds on the extent to which the alternative mechanisms matter—in particular,
we derive bounds on the fraction of always-takers (or never-takers) that are affected by the
treatment, as well as the average effect of the treatment for these always-takers.

3 Theory: General Case

We now consider the general case where M is a p-dimensional vector with a finite number of
possible support points m0, ...,mK´1. We denote by G “ lk the event that Mp0q “ ml and
Mp1q “ mk. We refer to individuals with G “ kk as the k-always takers, and individuals
with G “ lk for l ‰ k as the lk-compliers. (Note that the terms “always-taker” and “complier”
are used somewhat broadly here. For example, a “never-taker” in the case where M is binary
would be referred to as 0-always taker, and likewise a defier would be a 10-complier.) We
denote by θlk :“ P pMp0q “ ml,Mp1q “ mkq the fraction of the population of type G “ lk,
and let θ be the vector in the K2-dimensional simplex that collects the θlk.

Extending the definition from the previous section, we say that the sharp null of full
mediation holds if

Y pd,mq “ Y pmq almost surely, for all pd,mq
1

P t0, 1u ˆ tm0, ...,mK´1u.

We note that if M is multi-dimensional with, say, the first dimension corresponding to
mechanism A and the second corresponding to mechanism B, then the sharp null imposes
that the treatment operates on Y only through its joint effect on mechanisms A and B.

We assume throughout that the treatment is independent of the potential outcomes and
treatments. If the treatment were randomly assigned conditional on some observable X,
then all of the restrictions we derive would be valid conditional on X (see Section 6 for a
discussion of how these results could be extended to settings with instrumental variables).

Assumption 1 (Independence). The treatment is independent of the potential outcomes and
mediators, D KK pY p¨, ¨q,Mp¨qq.

For our identification results, we allow for the researcher to place arbitrary restrictions
on the shares of each compliance type.

Assumption 2 (Additional Restrictions). θ P R for R Ď ∆, where ∆ denotes the K2-
dimensional simplex.

We briefly review a few examples of restrictions that may be natural in some applications.
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Example 1 (Monotonicity and relaxations thereof).
First, consider the case where M is fully-ordered, so that m0 ă m1 ă ... ă mK´1. This nests
the binary example from the previous section as the special case where K “ 2. Then the
monotonicity assumption that Mp1q ě Mp0q corresponds to the restriction

R “ tθ P ∆ : θlk “ 0 if l ą ku.

One could also weaken this assumption by, for example, allowing for up to d̄ fraction of the
population to be defiers, which corresponds to setting

R “

#

θ P ∆ :
ÿ

l,k:ląk

θlk ď d̄

+

.

▲

Example 2 (Elementwise monotonicity).
Suppose that M is a p-dimensional vector for p ą 1. It may sometimes be reasonable to
impose that each element of Mpdq is increasing in d. This can be achieved by setting

R “ tθ P ∆ : θlk “ 0 if ml ł mku ,

where ml ĺ mk if each element of ml is less-than-or-equal the corresponding element of mk.9

Similar to the previous example, one could also allow for up to d̄ fraction of the population
to have Mp0q ł Mp1q. ▲

Example 3 (Smoothness of Mpdq).
In some settings, it may be reasonable to impose that the treatment does not have too large
an effect on M , at least for most people. This could be formalized by setting

R “

$

’

’

&

’

’

%

θ P ∆ :
ÿ

l,k
||ml´mk||ąκ

θlk ď d̄

,

/

/

.

/

/

-

.

This imposes that at most d̄ fraction of the population has ||Mp1q ´ Mp0q|| ą κ. ▲

Example 4 (No restrictions).
If the researcher is not willing to impose any restrictions on compliance types, then one can
simply set R “ ∆. ▲

9Analogous logic could be used to impose that Mp0q ĺ Mp1q in any partial order, not just the elementwise
one.
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It is worth nothing that all the restrictions given in the examples above can be written
as linear restrictions on θ, i.e. R takes the polyhedral form R “ tθ : Bθ ď cu for a known
matrix B and vector c. Below, we will show that sets R of this form facilitate straightforward
computation via linear programming.

In what follows, we derive lower bounds on the extent to which the k-always takers are
affected by the treatment despite having the same value of M regardless of treatment status.
In particular, in Section 3.1 we derive lower bounds on the fraction of k-always takers who
are affected by the treatment. Since the sharp null of full mediation implies that this fraction
is zero, we reject the sharp null if the lower bound on the fraction of k-always takers affected
is non-zero for any k. In Section 3.2, we derive bounds on the average effect of the treatment
for the k-always takers.

3.1 Bounds on fraction of always-takers affected

We now derive lower-bounds on the fraction of always-takers whose outcome is affected by
the treatment despite having the same value of M under both treatments. To be more
precise, we define

νk :“ P pY p1,mkq ‰ Y p0,mkq | G “ kkq

to be the fraction of k-always takers whose outcome is affected by the treatment despite
always having M “ mk under both treatments. The νk are a measure of the strength of
mechanisms other than M : they tell us what fraction of the k-always takers have a direct
effect of the treatment. Under the sharp null of full mediation, Y p1,mkq “ Y p0,mkq with
probability 1, and thus νk “ 0 for all k. By contrast, if νk is close to 1 for a particular k,
then alternative mechanisms other than M matter for nearly all k-always takers.

Our first main result provides a lower bound on νk as a function of the observable data
and the type shares θ. We will show that this bound is sharp in Section 3.1.1 below. To
simplify notation, let

∆kpAq :“ P pY P A,M “ mk | D “ 1q ´ P pY P A,M “ mk | D “ 0q

be the difference in the probability that Y P A,M “ mk between the treated and control
groups. We then have the following lower bound on the fraction of k-always takers affected
by the treatment.

14



Proposition 3.1. Suppose Assumption 1 holds. Then for all k “ 0, ..., K ´ 1,

θkkνk ě sup
A

∆kpAq ´
ÿ

l:l‰k

θlk

“ sup
A

∆kpAq ´ pP pM “ mk | D “ 1q ´ θkkq , (3)

where the sup is over all Borel sets A.10

Recall that under the sharp null of full mediation, the fraction of always takers affected
should be zero. We thus immediately obtain the following testable implications of the sharp
null by setting νk “ 0 in (3).

Corollary 3.1 (Testable implications of sharp null). If Assumption 1 holds and the sharp
null is satisfied, then for all k “ 0, ..., K ´ 1,

sup
A

∆kpAq ď
ÿ

l:l‰k

θlk “ P pM “ mk | D “ 1q ´ θkk. (4)

Proof sketch. We now provide a short sketch of the proof of Proposition 3.1. Observe
that individuals with M “ mk when D “ 1 are either k-always takers or lk-compliers. Thus,
we have that

P pY P A,M “ mk | D “ 1q “ θkkP pY p1,mkq P A | G “ kkq`
ÿ

l:l‰k

θlkP pY p1,mkq P A | G “ lkq.

Similarly, individuals with M “ mk when D “ 0 are either k-always takers or kl-compliers,
and so

P pY P A,M “ mk | D “ 0q “ θkkP pY p0,mkq P A | G “ kkq`
ÿ

l:l‰k

θklP pY p0,mkq P A | G “ klq.

From the previous two equations, it is then straightforward to solve for P pY p1,mkq P A |

G “ kkq´P pY p0,mkq P A | G “ kkq. Using the fact that probabilities are bounded between
0 and 1 and taking a sup over all sets A, we then obtain the inequality

θkk

ˆ

sup
A

rP pY p1,mkq P A | G “ kkq ´ P pY p0,mkq P A | G “ kkqs

˙

ě sup
A

∆kpAq ´
ÿ

l:l‰k

θlk.

Recall, however, that the total variation distance between distributions P and Q is defined
as supA P pY P Aq ´ QpY P Aq. Letting TVk denote the total variation distance between

10Formally, P pY p1,mkq ‰ Y p0,mkq | G “ kkq is only well-defined if P pG “ kkq ą 0. If P pG “ kkq “ 0,
we define νk “ 0.
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Y p1,mkq | G “ kk and Y p0,mkq | G “ kk, the previous display thus implies that

θkkTVk ě sup
A

∆kpAq ´
ÿ

l:l‰k

θlk.

However, as shown in Borusyak (2015), the total variation distance between two potential
outcomes distributions corresponds to a sharp lower bound on the fraction of individuals
who are affected by the treatment, and thus we have that TVk ď νk, which together with
the inequality in the previous display yields the result in Proposition 3.1. l

Partially-identified shares. If the type shares θ are point-identified, then Proposition 3.1
and Corollary 3.1 can be applied immediately to lower-bound the fraction of always-takers
affected by the treatment and test the sharp null. This is the case, for example, in the setting
in Section 2 with binary M and a monotonicity assumption, where the share of always-takers
and compliers is identified from the distribution of M | D. In more complicated settings,
however, the type shares θ may only be partially identified, as illustrated in the following
examples.

Example 5 (Binary M without monotonicity).
Consider the case where M is binary but we do not impose the monotonicity assumption.
It is well-known in IV settings with a binary treatment and instrument that the share of
defiers is not point-identified (e.g. Huber, Laffers and Mellace, 2017). Since we showed in
Section 2 that our setting with binary M is analogous to the IV setting, it follows that θ is
not generically point-identified without a monotonicity assumption. As a concrete example,
suppose that P pM “ 1 | D “ 1q “ 0.5 and P pM “ 1 | D “ 0q “ 0.3. Then the data is
consistent with there being no defiers (by setting θ11 “ 0.3, θ01 “ 0.2, θ00 “ 0.5, and θ10 “ 0)
but it is also consistent with up to 0.3 fraction of the population being defiers (by setting
θ11 “ 0, θ01 “ 0.5, θ00 “ 0.2, θ10 “ 0.3). ▲

Example 6 (Fully ordered, multi-valued M).
Partial identification of the shares also can arise if M is fully-ordered but takes on multiple
values (even under monotonicity). Consider the case where M takes on 3 values (0, 1, 2) and
the marginal distributions of M | D are as given in Figure 2, panel (a). As can be seen
in the figure, the treated group has a 0.2 higher probability that M “ 2 and a 0.2 lower
probability that M “ 0 relative to the control group. This is consistent with 20% of the
population being 02-compliers and the remainder of the population being always-takers (i.e.
θ02 “ 0.2, θ01 “ θ12 “ 0), as shown in Figure 2, panel (b). However, it is also consistent
with a “cascade” in which 20% of the population is 01-compliers, and another 20% of the
population is 12-compliers (i.e. θ01 “ θ12 “ 0.2, θ02 “ 0), as shown in Figure 2, panel (c).
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▲

Figure 2: Illustration of partial identification of type shares

(a) Distributions of M | D
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We will denote by ΘI the identified set for θ, i.e. the set of possible joint distributions
for pMp0q,Mp1qq that are consistent with the observed data and the restriction that θ P R.
Concretely, we denote by ΘI the set of θ such that

ÿ

l

θkl “ P pM “ mk | D “ 0q for k “ 0, .., K ´ 1 (Match marginals for M | D “ 0)

ÿ

l

θlk “ P pM “ mk | D “ 1q for k “ 0, .., K ´ 1 (Match marginals for M | D “ 1)

0 ď θkk1 ď 1 for all k, k1 (Probabilities in unit interval)

θ P R (Additional Restrictions).

It it worth noting that the first three restrictions above are linear in θ. Thus, if R is
characterized by linear restrictions, then the identified set is a polyhedron, and quantities
such as maxθPΘI

θkk can be calculated by linear programming.
Since Proposition 3.1 gives a lower bound on νk at the true shares θ, which are contained

within the identified set, it follows that νk is at least as large as the lowest lower bound
implied by a θ in the identified set. It turns out that the lowest lower bound is achieved
at the θ P ΘI that minimizes the fraction of k-always takers, θkk. This is intuitive since if
θkk “ 0, there are no k-always takers, and so it is impossible to obtain bounds on the fraction
of k-always takers affected. When the number of k-always takers is small, it is thus difficult
to learn about the fraction of k-always takers affected. The following corollary formalizes
the implied lower bounds on νk.

Corollary 3.2. Suppose Assumptions 1 and 2 hold. Let θmin
kk “ infθPΘI

θkk. If θmin
kk ą 0,
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then

νk ě inf
θPΘI

1

θkk

˜

sup
A

∆kpAq ´
ÿ

l:l‰k

θlk

¸

“
1

θmin
kk

ˆ

sup
A

∆kpAq ´
`

P pM “ mk | D “ 1q ´ θmin
kk

˘

˙

.

Similarly, Corollary 3.1 gives implications of the sharp null hypothesis involving the
true shares θ. Since the true θ is contained within the identified set, it follows that these
restrictions must hold for some θ P ΘI .

Corollary 3.3. Suppose Assumptions 1 and 2 hold. Then if the sharp null holds, there exists
some θ P ΘI such that supA ∆kpAq ď P pM “ mk | D “ 1q ´ θkk holds simultaneously for all
k “ 0, ..., K ´ 1.

Note that when ΘI is a polyhedron, then the implications of Corollary 3.3 can be tested
simply via linear programming. In particular, the implications are satisfied if and only if the
linear program

min
sPR,θPΘI

s s.t. sup
A

∆kpAq ď P pM “ mk | D “ 1q ´ θkk ` s for all k (5)

has a solution s˚ ď 0. It is thus straightforward to verify whether there exists a θ P ΘI

consistent with the sharp null and the observable data.

Remark 1 (Closed-form solution with fully-ordered, monotone M).
Consider the case where M is fully-ordered and we impose monotonicity as in Example 1. In
this case, it turns out that there is a closed-form solution for θmin

kk . Intuitively, to minimize the
number of always-takers, we wish to have as many compliers as possible. This can be achieved
by maximizing the amount of “cascading”, as in panel (c) of Figure 2. Proposition B.1 in the
appendix formalizes this intuition, and shows that

θmin
kk “ maxt P pM “ mk | D “ 1q

looooooooooomooooooooooon

Point mass at M “ mk when D “ 1

´ P pM ě mk | D “ 1q ´ P pM ě mk | D “ 0q
loooooooooooooooooooooooooooomoooooooooooooooooooooooooooon

Treatment effect on survival fn of M at mk

, 0u.

(6)
Moreover, there exists a θ P ΘI such that θkk “ θmin

kk simultaneously for all k. Thus, when
M is fully-ordered and we impose monotonicity, one need not use a linear program to lower
bound νk or test the sharp null, but can simply plug in the value of θmin

kk to the testable
implications given in Corollaries 3.2 and 3.3. ▲

Remark 2 (Identifying Power).
The testable implications we have derived for the sharp null are based on the fact that
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under the sharp null, there is no effect of the treatment on k-always takers (i.e. νk “ 0).
Intuitively, it is harder to obtain non-trivial lower bounds on νk the fewer k-always takers
there are. Indeed, if there were no always-takers for any k, then our testable implications
would be satisfied trivially. This can be seen more formally by observing that the inequalities
in Corollary 3.3 are harder to satisfy the larger is θkk. The expression for θmin

kk in (6) is thus
informative about when the testable implications will have bite. In particular, it shows that
θmin
kk will tend to be large when there is substantial point mass at M “ mk in the treated

group, and when the treatment effect on the survival function is small at M “ mk. Thus,
while our testable implications are valid for any M with a finite number of support points,
there will tend to be more identifying power when there is substantial point mass for at least
some values of M . ▲

Remark 3 (Binning values of M).
In light of the previous remark, in settings where the original M is continuous or discrete
with many values, it may be tempting to discretize the original M into a small number
of bins, and then apply the tests above with the discretized value of M to increase power.
Under such a discretization, our tests for the sharp null remain valid if one imposes that
Y pd,mq “ Y pd,m1q for all m,m1 in the same bin, i.e. changes of M within a bin do not affect
the outcome. This is, of course, a strong assumption if taken literally. However, one might
reasonably expect that a small change in M should not affect the outcome for most people.
This could be captured by the assumption that P pY pd,mq ‰ Y pd,m1q | G “ kkq ď νmax

for all m,m1 in the same bin, i.e. changes of M within a bin affect at most νmax fraction
of always-takers.11 Under this assumption, at most νmax fraction of always-takers should be
affected using the discretized M , and thus we can reject the sharp null if the lower bound
on νk given in Corollary 3.3 using the discretized M exceeds νmax. ▲

Remark 4 (Functions of the νk).
We may sometimes be interested in aggregations of the νk across k. For example, the total
fraction of always-takers whose outcome is affected by treatment, pooling across k, is given
by

ν̄ :“ P pY p1,Mp1qq ‰ Y p0,Mp0qq | Mp1q “ Mp0qq “

ř

k θkkνk
ř

k θkk
.

To compute a lower bound on this quantity, we must find θ and ν to minimize
ř

k θkkνk
ř

k θkk
subject

to the constraints that (3) holds and θ P ΘI . If we reparameterize the problem in terms of θ
and ν̃k :“ θkkνk, then both the numerator and denominator of the objective are linear in the
parameters, and the constraints are also linear in the parameters if R is a polyhedron. Thus,

11Here, G “ kk refers to always-takers with respect to the discretized M , i.e. units whose discretized M
falls in bin k under both treatments.
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the problem of minimizing
ř

k θkkνk
ř

k θkk
over the identified set is a linear-fractional program, which

can be recast as a simple linear program via the Charnes and Cooper (1962) transformation.
It is thus simple to solve for lower bounds on the total fraction of always-takers affected by
treatment, pooling across k. ▲

Remark 5 (Connections to IV testing).
Since testing the sharp null of full mediation is analogous to testing instrument validity—
with M playing the role of the endogenous variable and D the instrument—Corollary 3.3
immediately implies testable implications for instrument validity in settings with a binary
instrument and multi-valued M .12,13 Further, we show in the next section that these testable
implications are in fact sharp. The sharp testable restrictions derived here thus may be of
independent interest for the problem of testing instrument validity. Sun (2023) derived non-
sharp testable implications of instrument validity in the setting where M is multi-valued but
fully-ordered and one imposes monotonicity. His testable restrictions involve only the observ-
able distributions with the minimum and maximum value of M . By contrast, Corollary 3.3
shows that there are in fact testable restrictions coming from all possible values of M , and
adding these additional restrictions makes the testable impliations sharp. Moreover, while
Sun (2023)’s results apply under a monotonicity assumption, our results also imply testable
implications under relaxations of monotonicity via a suitable choice of R, as described in
Examples 1-4 above. ▲

3.1.1 Sharpness of Bounds

So far we have provided lower bounds on the fraction of k-always takers who were affected
by treatment, νk. These lower bounds in turn implied testable implications for the sharp
null, under which νk “ 0 for all k. We now show that the testable implications from the
previous section are sharp, in the sense that they exhaust all the testable content in the
data.14 In particular, we will show there exists a data-generating process for the potential
outcomes and mediators consistent with the observable data such that the lower bounds for

12Specifically, our results are relevant for testing instrument validity when one assumes the full random-
ization assumption that the instrument is independent of both potential outcomes and treatments. The
implications we derive may not be valid under the weaker notion of independence considered in Kédagni
and Mourifié (2020), which imposes only that the instrument is independent of potential outcomes but not
potential treatments.

13The case where M is multi-dimensional does not have an obvious parallel in the literature on testing
instrument validity, since this would correspond to an IV setting with a single instrument but multiple
endogenous variables.

14We note that the causal inference literature uses the phrase sharp null to describe a null-hypothesis in
which all treatment effects are zero, while the literature on specification testing describes implications as
sharp if they exhaust the testable content in the data. We thus refer to the sharp null of full mediation and
sharp testable implications, in line with these two distinct notions of sharpness.
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the νk in Proposition 3.1 hold with equality. As a corollary, if the testable implications of the
sharp null are satisfied, then there exists a DGP for the potential outcomes and mediators
consistent with the observable data such that the sharp null is satisfied.

We first formalize what we mean for a distribution of potential outcomes to be consistent
with the observable data. Recall that P denotes the distribution of the observable data
pY,M,Dq. Let P ˚ be a distribution over the model primitives pY p¨, ¨q,Mp¨, ¨q, Dq. We
say that the distribution P ˚ is consistent with the observable data if the distribution of
pY pD,MpDqq,MpDq, Dq under P ˚ is equal to P—that is, P ˚ is a distribution of the model
primitives that leads to observable data P .

Our next result then shows that the lower bounds on νk derived in Proposition 3.1 are
sharp: i.e. there exists a P ˚ consistent with the observable data under which the inequalities
hold with equality.15

Proposition 3.2. For any θ P ΘI , there exists a distribution P ˚ for pY p¨, ¨q,Mp¨q, Dq

consistent with the observable data and satisfying Assumptions 1 and 2 such that for all
k “ 0, ..., K ´ 1,

˜

sup
A

∆k ´
ÿ

l:l‰k

θlk

¸

`

“ θkkνk, (7)

where νk “ P ˚pY p1,mkq ‰ Y p0,mkq | G “ kkq, θlk “ P ˚pMp0q “ ml,Mp1q “ mkq, and
pxq` :“ maxtx, 0u.

It follows immediately from Proposition 3.2 that the implications of the sharp null derived
in Corollary 3.1 are sharp.

Corollary 3.4. Suppose that there is some θ P ΘI such that (4) holds for all k “ 0, ..., K´1.
Then there exists a distribution P ˚ for pY p¨, ¨q,Mp¨q, Dq consistent with the observable data
and satisfying Assumptions 1 and 2 such that the sharp null holds.

3.2 Bounds on average effects for always-takers

So far we have provided lower bounds on νk, the fraction of k-always takers who are affected
by the treatment despite having M “ mk under both treatments. The νk provide a measure
of what fraction of always-takers are affected by alternative mechanisms. However, in some
settings we may also be interested in the magnitude of the alternative mechanisms for the
always-takers. In this section, we derive bounds on

ADEk :“ ErY p1,mkq ´ Y p0,mkq | G “ kks,

15More precisely, the lower bound either holds with equality or is negative, in which case the tight lower
bound is trivially zero. That is, a tight lower bound is the maximum of the left-hand side of (3) and zero.
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the average direct effect of the treatment on the outcome for the k-always takers. This
provides an alternative measure of the size of the alternative mechanisms for the always-
takers.

To derive bounds for ADEk, we first derive bounds on ErY p1,mkq | G “ kks. Observe
that individuals with M “ mk, D “ 1 must be either k-always takers or lk-compliers.
The share of k-always takers among this population is given by θ̃1kk :“ P pG “ kk | D “

1,M “ mkq “
θkk

P pM“mk|D“1q
. It follows that the observable distribution of Y | D “ 1,M “

mk is a mixture with weight on θ̃1kk on Y p1,mkq | G “ kk and weight p1 ´ θ̃1kkq on the
distribution of Y p1,mkq for lk-compliers. We can thus obtain bounds on ErY p1,mkq | G “

kks by considering the worst-case scenario where the k-always takers compose the bottom
θ̃kk fraction of the Y | D “ 1,M “ mk distribution, and the best-case scenario where they
compose the top θ̃kk fraction.

The following lemma formalizes this intuition for obtaining bounds on ErY p1,mkq |

G “ kks, and applies analogous logic to obtain bounds on ErY p0,mkq | G “ kks. For
ease of notation, we present results in the main text assuming that the distribution of Y
is continuous; analogous results without this assumption are given in Lemma A.3 in the
Appendix.

Lemma 3.1. Suppose Assumption 1 holds and that Y is continuously distributed. Let ydq :“

F´1
Y |D“d,M“mk

pqq be the qth quantile of Y | D “ d,M “ mk. If θ̃1kk ą 0, then

ErY | M “ mk, D “ 1, Y ď y1
θ̃1kk

s ď ErY p1,mkq | G “ kks ď ErY | M “ mk, D “ 1, Y ě y1
1´θ̃1kk

s.

Likewise, if θ̃0kk ą 0, then

ErY | M “ mk, D “ 0, Y ď y0
θ̃0kk

s ď ErY p0,mkq | G “ kks ď ErY | M “ mk, D “ 0, Y ě y0
1´θ̃0kk

s.

The bounds are sharp in the sense that there exists a distribution P ˚ for pY p¨, ¨q,Mp¨q, Dq

consistent with the observable data and with θlk “ P ˚pG “ lkq such that the bounds hold with
equality.

Lemma 3.1 immediately implies bounds on ADEk by differencing the inequalities for the
expectations of Y p1,mkq and Y p0,mkq. Note, however, that the bounds in Lemma 3.1 involve
the always-taker share θ̃dkk “

θkk
P pM“mk|D“dq

, which may only be partially identified. It is
straightforward to see, however, that the bounds become wider the smaller is θ̃dkk. Intuitively,
this is because the most-favorable subdistribution of fraction θ̃dkk is more favorable the smaller
is θ̃dkk, and likewise for the least-favorable subdistribution. Sharp bounds on ADEk can thus
be obtained by plugging θmin

kk into the bounds given in Lemma 3.1. For notation, let LB1pθ̃
1
kkq
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and UB1pθ̃
1
kkq denote the lower- and upper-bounds on ErY p1q | G “ kks given in Lemma 3.1

as a function of θ̃1kk. We define LB0pθ̃
0
kkq and UB0pθ̃0kkq analogously, replacing Y p1q with

Y p0q.16 We then have the following bounds on ADEk.

Proposition 3.3. Suppose Assumption 1 holds and Y is continuously distributed. If θmin
kk “

infθPΘI
θkk ą 0, then sharp bounds on ADEk are given as follows:

LB1pθ̃
1,min
kk q ´ UB0pθ̃0,min

kk q ď ADEk ď UB1pθ̃1,min
kk q ´ UB0pθ̃

0,min
kk q

where θ̃d,min
kk “

θmin
kk

P pM“mk|D“dq
. The lower and upper bounds are each sharp in the sense that

there exists a distribution P ˚ for pY p¨, ¨q,Mp¨q, Dq consistent with the observable data and
Assumption 1 and Assumption 2 such that the bound holds with equality.

It is worth noting that in the simple case where M is binary and one imposes monotonicity,
the bounds on ADEk correspond to Lee (2009)’s bounds, where D is viewed as the treatment
and M as the “sample selection”. In the binary case, the ADEk can also be viewed as what
the statistics literature refers to as principal strata direct effects for the principal strata with
Mp1q “ Mp0q “ mk (Frangakis and Rubin, 2002; Zhang and Rubin, 2003).17 Flores and
Flores-Lagunes (2010) observed that such bounds could be used for mediation analysis in
the case of binary M—their Proposition 1 matches the bounds given in Lemma 3.1 for the
special case where M is binary—although they use this primarily as an intermediate step to
derive bounds on the population direct effect of treatment. Our result extends these existing
results for the binary case to settings where M may be multi-valued (and where monotonicity
may fail).

It is also worth emphasizing that the sharp null of full mediation considered earlier is
distinct from the null hypothesis that ADEk “ 0 for all k. In particular, the sharp null
imposes that the treatment does not have an effect on the outcome for any always-taker,
whereas the null that ADEk “ 0 imposes that the treatment does not affect the k-always
takers on average. This is analogous to the distinction between the sharp null considered by
Fisher and the weak null considered by Neyman, applied to the sub-population of always-
takers. Thus, we may be able to reject the sharp null in settings where we cannot reject the
weaker null that the ADEk are zero.

16For settings where Y is not continuous, the analogous result holds if one replaces LBd and UBd with
the analogous expressions given in Lemma A.3 for the case where Y is not assumed to be continuous.

17VanderWeele (2012) argues that one should not interpret the principal stratum effect for compliers as
an indirect effect, but rather a combination of the direct and indirect effects (a total effect). This critique
does not apply to our analysis of the principal stratum effects for always-takers, since their value of M is
unaffected by D, and thus any effects for this subgroup must be direct effects.
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4 Inference

The previous section derived testable implications of the sharp null of full mediation, as
well as measures of the extent to which it is violated, which involved the distribution of the
observable data pY,M,Dq „ P . We now derive methods for inference on the sharp null given
a sample of N iid observations (or clusters) drawn from P , pYi,Mi, Diq

N
i“1. For simplicity of

notation, we focus on testing the sharp null, although a simple adaptation of the described
approach can be used to test null hypotheses of the form H0 : νk ď νub

k for any νub
k (with the

sharp null the special case with νub
k “ 0 for all k.)

We first comment on the non-standard nature of the inference problem. Recall that the
testable implications of the sharp null are equivalent to whether the linear program (5) has
a weakly negative solution. However, functions of the observable data enter the constraints
of the linear program, and it is well-known that the solution to a linear program can be
non-differentiable in the constraints. Second, the function of the observable data in the con-
straints, supA ∆kpAq, is itself potentially non-differentiable in the underlying data-generating
process. If the outcome Y is continuously distributed, for example, then supA ∆kpAq “
ş

pfY,M“mk|D“1pyq ´ fY,M“mk|D“0pyqq` dy, where pxq` “ maxtx, 0u, which is clearly non-
differentiable in the underlying partial densities if fY,M“mk|D“1pyq “ fY,M“mk|D“0pyq on a set
of positive measure. Since bootstrap methods are generally invalid when the target parame-
ter is non-differentiable in the underlying data-generating process (Fang and Santos, 2019),
we cannot simply bootstrap the solution to (5).

We now show that methods from the moment inequality literature can be used to circum-
vent these issues. We focus on the case where the distribution of Y is discrete, with support
points y1, ..., yQ. As we discuss in Remark 6 below, if Y is continuous, then the tests we
derive remain valid if one uses a discretization of Y , although at the potential loss of sharp-
ness. We also focus on the case where R takes the polyhedral form R “ tθ P ∆ : Bθ ď cu.
To see the connection with moment inequalities, observe that with discrete Y , we have that

sup
A

∆kpAq “

Q
ÿ

q“1

pP pY “ yq,M “ mk | D “ 1q ´ P pY “ yq,M “ mk | D “ 0qq
`

where again pxq` “ max tx, 0u. It follows that the inequality

sup
A

∆kpAq ď P pM “ mk | D “ 1q ´ θkk
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holds if and only if there exist δk1, ..., δkQ such that

Q
ÿ

q“1

δkq ď P pM “ mk | D “ 1q ´ θkk (8)

δkq ě P pY “ yq,M “ mk | D “ 1q ´ P pY “ yq,M “ mk | D “ 0q for q “ 1, ..., Q (9)

δkq ě 0 for q “ 1, ..., Q. (10)

Hence, the testable implications of the sharp null derived in Corollary 3.3 are equivalent to the
statement that there exists some θ P ΘI and δ such that (8)-(10) hold for all k “ 0, ..., K ´1.

Observe, further, that δ, θ and the observable probabilities enter the inequalities (8)-(10)
linearly, and the same is true for the constraints that determine ΘI . Letting ω “ pθ1, δ1q1, it
follows that we can write the testable implications of the model in the form

C1 ω ´ C2 p ě 0,

where C1, C2 are known matrices (not depending on the data) and p is a vector that collects
probabilities of the form P pY “ yq,M “ mk | D “ dq and P pM “ mk | D “ dq. Let p̂

denote the sample analog to p. Since Erp̂s “ p, we can write the testable implications of the
sharp null as

H0 : Dω s.t. ErC1ω ´ C2p̂s ě 0. (11)

Moment inequalities of this form—in which the nuisance parameter ω enters the moments
linearly and with known coefficients C1—have been studied recently by Andrews et al. (2023),
Cox and Shi (2022), Fang et al. (2023), and Cho and Russell (2024). The existing methods
from the aforementioned papers can thus be used directly to test the sharp null of full
mediation.

Remark 6 (Discretizing continuous outcomes).
Suppose that the outcome Y is continuously distributed. Let I1, ..., IQ be disjoint intervals
that partition the outcome space, and let Y disc be the discretization of Y that equals j when
Y P Ij. Let ∆disc

k pAq be the analog to ∆kpAq using Y disc instead of Y . Observe that

sup
A

∆disc
k pAq “ sup

A
P pY disc

P A,M “ mk | D “ 1q ´ P pY disc
P A,M “ mk | D “ 0q

“ sup
APAdisc

P pY P A,M “ mk | D “ 1q ´ P pY P A,M “ mk | D “ 0q “ sup
APAdisc

∆kpAq

where Adisc is the σ-algebra generated by I1, ..., IQ. Since Adisc is a subset of the Borel σ-
algebra, it follows that supA ∆disc

k pAq ď supA ∆kpAq. Hence, the testable implications of the
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sharp null for Y imply the testable implications of the sharp null for any discretization of Y .
One can thus obtain valid inference on the sharp null by discretizing the outcome and then
using the approach described above with Y disc. Of course, to retain approximate sharpness
of the testable implications, one would like to choose a discretization fine enough such that
supA ∆disc

k pAq « supA ∆kpAq. Observe that with a continuous outcome, supA ∆disc
k pAq “

supA ∆kpAq if the sign of fY,M“mk|D“1pyq ´ fY,M“mk|D“0pyq is constant at all y within the
same interval Ij. To obtain approximate sharpness of the testable implications, one would
thus like to choose a discretization such that there is a cut-point close to any point where the
partial densities cross. A practical tradeoff arises, however, because making the discretization
finer increases the number of moment inequalities needed to test, and the validity of the
methods described above relies on the number of moments being sufficiently small relative
to the sample size for a central limit theorem to approximate the distribution of p̂. Moreover,
the power of moment inequality methods may depend on the number of moments included.
Although a formal treatment of the optimal discretization is beyond the scope of this paper,
we explore the impact of discretization in our Monte Carlo simulations below. ▲

4.1 Monte Carlo

To evaluate the methods for inference described above, we conduct Monte Carlo simulations
calibrated to our applications to Bursztyn et al. (2020) and Baranov et al. (2020) in Section 5
below. We focus on testing the sharp null under a monotonicity assumption.

Outcomes and mediators. The outcome, mediator(s), and treatment in our simulations
match those in our empirical applications. For Bursztyn et al. (2020), the outcome is a
binary indicator for applying for jobs outside of the home, and the mediator is a binary
indicator for job-search service sign-up. For Baranov et al. (2020), the outcome is an index
of financial empowerment. We consider two mediators, a binary indicator for the presence
of a grandmother in the household, and a relationship-quality score, which is a score on a
1-5 scale.

Sample sizes. The sample used for our main analysis of Bursztyn et al. (2020) contains
284 people, with treatment assignment randomized at the individual level (approximately
half (139) were treated). For the simulations calibrated to Bursztyn et al. (2020), we draw
284 iid observations to match the original sample size. In Baranov et al. (2020), treatment
was assigned at the level of a cluster (i.e. at the Union Council level), with a total of 40
clusters (20 treated, 20 control), and a total sample size of approximately 600 individuals
(568 or 585 depending on the choice of M). For simulations calibrated to Baranov et al.
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(2020), we therefore draw 20 independent clusters from each treatment group. Given the
small number of clusters, we expect this to be a relatively challenging setting for inference.
To evaluate the impact of having a small number of clusters, we also consider alternative
simulation designs where we sample 40 or 100 clusters of each treatment type, with a total
of 80 and 200 clusters for each design.

Description of DGP. In all of our simulations, we sample the distribution of pY,Mq for
control units from the empirical distribution of control units in our applications (i.e. from
pY,Mq | D “ 1). For treated units in our simulations, we draw with probability t from
the empirical distribution of pY,Mq for treated units, and with probability 1 ´ t from the
empirical distribution for control units, where t P t0, 0.5, 1u is a simulation parameter. Thus,
when t “ 1, we are sampling both treated and control units in the simulation from the
empirical distribution in the data, under which the sharp null is violated. This allows us
to assess the power of the various tests. When t “ 0, on the other hand, the distribution
of pY,Mq for both treated and control units in the simulation is drawn from the empirical
distribution for control units in the original data. This ensures that the testable implications
of the sharp null are satisfied, which allows us to evaluate size control. (In fact, the design
ensures that all of the implied moment inequalities hold with equality, which is generally
a challenging setting for size control for moment inequality methods.) When t “ 0.5, the
distribution of pY,Mq for treated units is a mixture of the empirical distribution for treated
and control units in the original data. Thus, the sharp null is violated, but the violation
is smaller than under the case when t “ 1. Comparing across the cases t “ 0.5 and t “ 1

thereby allows us to evaluate how the power tests changes with the size of the violation of
the null.

Methods used. To implement tests based on moment inequalities as described above, we
consider the hybrid test proposed by Andrews et al. (2023, henceforth ARP), the conditional
conditional chi-squared test proposed by Cox and Shi (2022, henceforth CS),18 and the test
proposed by Fang et al. (2023, henceforth FSST).19 For comparison to existing methods
in the case where M is binary, we consider the test for instrument validity proposed by
Kitagawa (2015, henceforth K).20 In the simulations calibrated to Bursztyn et al. (2020), the

18More precisely, CS propose a conditional chi-squared test and a “refined” version of this test. Since the
refinement is computationally costly with many moments, and only matters when one moment is binding,
we only implement the refinement in DGPs with a binary outcome, for which there are fewer moments.

19When M is binary, we implement the formulation of the moment inequalities derived in (2) without
nuisance parameters. For non-binary M , we use the formulation in (11).

20For the DGPs based on Baranov et al. (2020), we use a modified version of Kitagawa (2015) to account
for clustering.
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outcome is binary, and thus no discretization of the outcome is needed. For the simulations
calibrated to Baranov et al. (2020), where the outcome takes many values, for the moment
inequality methods we consider a discretization of the outcome based on 5 bins in our main
specification (see Remark 6). We also consider alternative specifications using 2 and 10 bins.
Since the K test does not require a discrete outcome, we use the original continuous outcome
when implementing the K test. Implementation of the FSST test requires specifying the
moment-selection tuning parameter λ. We consider the two choices recommended by FSST
in their Remark 4.2, one of which is data-driven and the other is not. We refer to the
resulting tests as FSSTdd and FSSTndd (where ‘dd’ denotes data-driven). For CS and ARP,
we use analytic estimates of the variance of the moments, assuming the data are drawn iid

in the simulations calibrated to Bursztyn et al. (2020), or that clusters are drawn iid in
the simulations calibrated to Baranov et al. (2020). Since the K and FSST tests require
bootstrap replicates, we use a non-parametric bootstrap at either the individual or cluster
level, as appropriate.21 All tests are implemented with nominal size of 5%.

Simulation Results. Table 1 reports the results for simulations designs where we have a
binary mediator. This includes the DGP based on Bursztyn et al. (2020) (Panel A), and the
DGPs that are based on Baranov et al. (2020) where the considered mediator is the binary
indicator for the presence of a grandmother (Panels B-D). Table 2 shows results calibrated
to Baranov et al. (2020) using the non-binary relationship quality variable as the mediator.
Both tables show the rejection probabilities for each of the methods described above under
different simulation designs. To quantify the magnitude of the violations of the sharp null,
the table also reports the lower-bound on the fraction of always-takers affected (ν̄).22

We first evaluate size control. Recall that DGPs with t “ 0 impose the sharp null of
full mediation. Across nearly all simulation designs, we find that the ARP, CS, and K
tests have close to nominal size, with rejection probabilities no larger than 9% for a 5%
test. The one notable exception is the simulations in Panel B of Table 1, where there are
only 40 independent clusters, in which case CS is somewhat over-sized, with a null rejection
probability of 0.15. Doubling the number of clusters to 80 (Panel C) restores approximate size
control, however. We find that the FSST tests often have reasonable size control for settings
with a large number of independent observations or clusters, but can be substantially over-
sized in settings with a small or moderate number of clusters using the two default choices

21We have verified that ARP and CS return similar results if we use an analogous bootstrap estimate of
the variance rather than the analytic estimates.

22For the simulations calibrated to Baranov et al. (2020) with multi-valued M , we compute the lower bound
on ν̄ in the same way as described in Footnote 25 in the application section below, which deals with the fact
that the empirical distribution shows a small (but statistically insignificant) violation of monotonicity.
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Table 1: Simulation results for binary M

Panel A: Bursztyn et al

ν̄ LB ARP CS K FSSTdd FSSTndd
t=0 0 0.038 0.032 0.030 0.078 0.070

t=0.5 0.036 0.196 0.190 0.116 0.214 0.194
t=1 0.077 0.626 0.632 0.386 0.620 0.584

Panel B: Baranov et al, 40 clusters

ν̄ LB ARP CS K FSSTdd FSSTndd
t=0 0 0.056 0.154 0.050 0.232 0.212

t=0.5 0.134 0.194 0.206 0.064 0.314 0.270
t=1 0.283 0.570 0.668 0.422 0.750 0.680

Panel C: Baranov et al, 80 clusters

ν̄ LB ARP CS K FSSTdd FSSTndd
t=0 0 0.044 0.064 0.040 0.132 0.112

t=0.5 0.134 0.322 0.340 0.160 0.410 0.322
t=1 0.283 0.836 0.936 0.846 0.956 0.936

Panel D: Baranov et al, 200 clusters

ν̄ LB ARP CS K FSSTdd FSSTndd
t=0 0 0.044 0.054 0.030 0.120 0.090

t=0.5 0.134 0.686 0.776 0.618 0.776 0.734
t=1 0.283 0.998 1 1 1 1

Notes: This table contains simulation results for the DGPs where we have
a binary mediator. The first column shows the value of t, which determines
the distance from the null, as described in the main text. The second column
shows the lower-bound on the fraction of always-takers affected by treatment,
ν̄. The remaining columns contain the rejection probabilities for each of
the methods considered. Panel A shows the results for the DGP based on
Bursztyn et al. (2020) and Panels B-D show the results for the DGPs based on
Baranov et al. (2020), with the binary grandmother mediator, under different
numbers of clusters. In Panels B-D, we use a discretization of the outcome
into 5 bins for all tests except the K test. Rejection probabilities are computed
over 500 simulation draws, under a 5% nominal significance level.
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Table 2: Simulation results for non-binary M

Panel A: Baranov et al, 40 clusters

ν̄ LB ARP CS FSSTdd FSSTndd
t=0 0 0.052 0.088 0.274 0.178

t=0.5 0.119 0.066 0.228 0.438 0.374
t=1 0.255 0.166 0.754 0.864 0.828

Panel B: Baranov et al, 80 clusters

ν̄ LB ARP CS FSSTdd FSSTndd
t=0 0 0.066 0.048 0.188 0.128

t=0.5 0.119 0.066 0.314 0.582 0.500
t=1 0.255 0.164 0.962 0.994 0.990

Panel C: Baranov et al, 200 clusters

ν̄ LB ARP CS FSSTdd FSSTndd
t=0 0 0.046 0.026 0.144 0.108

t=0.5 0.119 0.076 0.542 0.862 0.824
t=1 0.255 0.286 1 1 1

Notes: This table contains simulation results for the DGPs where
we have a non-binary mediator. The first column shows the value
of t, which determines the distance from the null, as described in
the main text. The second column shows the lower-bound on the
fraction of always-takers affected by treatment, ν̄. The remaining
columns contain the rejection probabilities for each of the inference
methods considered. Each panel contains results for the DGPs
based on Baranov et al. (2020), where the non-binary relationship-
quality mediator is considered, for different numbers of clusters. All
tests use a discretization of the outcome based on 5 bins. Rejection
probabilities are computed over 500 simulation draws, under a 5%
nominal significance level.
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of tuning parameters, particularly with multi-valued M (e.g. rejection probabilities of 0.274
and 0.178 in Table 2, Panel A).

We next evaluate power, focusing on the simulations with t “ 0.5 and t “ 1 under which
the null is violated. Across all of the simulation designs, the CS test has power similar to
or greater than that of ARP. The differences can be substantial in some cases, particularly
with multi-valued M (e.g. power of 0.96 vs 0.16 in Panel B of Table 2). Likewise, the power
of the FSST tests is similar to or exceeds that of the CS test across nearly all simulation
designs, although this comparison must be taken with some caution in cases where the FSST
test appears to be over-sized. Finally, we note that in all of the simulations with binary M

(Appendix Table 1), the power of the three moment inequality tests (ARP, CS, FSST) is
either similar to or exceeds that of the K test. This is the case both when the outcome is
binary (Panel A), and when the outcome is approximately continuous (Panels B-D). Recall
that when the outcome is continuous, the moment inequality tests use a discretization of the
outcome to 5 bins, whereas the K test does not use a discretization. The favorable power
comparisons in Panels B-D thus suggest that discretization does not come at a large loss of
power in this simulation design, although of course this conclusion may be specific to the
particular DGP studied here.

In Appendix Table 1 and Appendix Table 2 we present results for simulations calibrated
to Baranov et al. (2020) using a discretization with 2 or 10 bins, rather than the 5 considered
here. The patterns are qualitatively similar to those reported above. We again find good size
control for CS and ARP in nearly all specifications. The one exception is again size control for
CS in the setting calibrated to Baranov et al. (2020) with binary M and 40 clusters. Relative
to our baseline simulation with 5 bins, we find that size control improves when using 2 bins,
and becomes worse when using 10 bins. This is intuitive, since the number of moments
used increases with the bin size, and thus we expect the quality of the central limit theorem
approximation to be worse with more bins. In terms of power, we do not find an obvious
pattern across bin sizes, with power increasing in the number of bins for some tests/DGPs
and decreasing for others. This reflects the fact that although the testable implications
become sharper the more bins are used (see Remark 6), the finite-sample properties of the
tests depend on the number of moments, and thus power may decrease when increasing the
number of moments. Considering the balance of size control and power, 5 bins seems a
reasonable default choice based on our simulations, although more formal guidance on the
optimal number of bins strikes us as an interesting avenue for future research.

Recommendation. Based on our simulations, CS strikes us a reasonable default choice
for most empirical settings, given that it has approximate size control across most of our
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simulation designs and favorable power relative to ARP. However, ARP performs somewhat
better in terms of size control in settings with a small number of clusters, and thus may be an
attractive alternative for researchers concerned about size control in such settings, albeit at
the loss of some power (particularly with multi-valued M). Likewise, FSST may offer power
improvements relative to CS in settings with a large number of independent observations,
so that size control is not a concern. In our applications below, we report results for CS in
the main text; analogous results for ARP and FSST are given in Appendix Table 3.

5 Empirical applications

5.1 Bursztyn et al. (2020) revisited

We now revisit our application to Bursztyn et al. (2020) from Section 2. Recall that our
treatment D is random assignment to an information treatment about other men’s beliefs
about women working outside the home, M is sign-up for the job-search service, and Y

is an indicator for whether the wife applies for jobs outside of the home. For our main
specification, we restrict attention to the majority of men who at baseline under-estimate
other men’s beliefs, so that the monotonicity assumption that treatment weakly increases job-
search service is plausible. (We find similar results when including all men; see Appendix D.)

Statistical significance. Recall from Figure 1 that the testable implications of the sharp
null were rejected based on the empirical distribution. Using the approach to inference de-
scribed above, we find these violations are in fact statistically significant, with a p-value of
0.02 using the CS test.23 (We obtain similar results using the other tests; see Appendix
Table 3.) The data thus provides strong evidence that the impact of the information treat-
ment on long-run labor market outcomes does not operate solely through the sign-up for
the job-search service. In particular, there are some never-takers who would not sign up
for the service under either treatment who are nevertheless induced to apply for jobs by
the treatment. We thus see that, for at least some people, the information treatment has
meaningful impact outside of the lab, beyond its impact on job-search service sign-up.

Magnitudes of alternative mechanisms. How large are the effects of the information
treatment for those who are not induced to sign-up for the job-search service? Proposition 3.1
gives us a lower bound on the fraction of the always-takers/never-takers who are affected by

23Since the outcome is binary, no discretization is needed for this application. The p-value reported here
is the smallest value of α for which the test rejects.
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the treatment despite having no effect on job-search service signup. Our estimates of the
lower bounds suggest that at least 11 percent of “never-takers” who would not be signed up
for the job-search service under either treatment are nevertheless affected by the treatment.
(We obtain a trivial lower-bound of 0 for the “always-takers”.) Applying the results in
Proposition 3.3, we also estimate lower and upper bounds on the average effect for these
never-takers of 0.11 to 0.18.24 For comparison, our estimate of the overall average treatment
effect is 0.12. The effect for never-takers is thus of a fairly similar magnitude to that of
the total population, despite the fact that they have no change in job-search service signup.
If we were willing to assume that the direct effects (i.e. effects not through the job-search
service) were similar between always-takers, never-takers, and compliers (granted, a strong
assumption), this would imply that the majority of the total effect operates through the
information treatment.

Robustness to monotonicity violations. Our baseline results impose the monotonicity
assumption that receiving the information that other men are more open to women working
than one initially thought only increases job-search service sign-up. This could be violated
if, for example, there is measurement error in the initial elicitation of beliefs, so that some
men included in our sample actually initially over-estimated other men’s beliefs. To explore
robustness to violations of the monotonicity assumption, we re-compute our bounds on the
fraction of never-takers affected allowing for up to d̄ fraction of the population to be defiers.
We find that the estimated lower-bound is positive for d̄ up to 0.07, which corresponds to
7% of the population being defiers, or put otherwise, 0.33 defiers for every complier.

5.2 Baranov et al. (2020)

We next examine the setting of Baranov et al. (2020). They present long-run results on an
RCT that randomized access to a cognitive behavioral therapy (CBT) program intended to
reduce depression for pregnant women and recent mothers. In a seven-year followup, they
find that the program substantially reduced depression and increased measures of women’s
financial empowerment, such as having control over finances and working outside of the
home. They are then interested in the mechanisms by which treating depression increases
financial empowerment. They therefore examine a variety of intermediate outcomes. Two
of the outcomes for which they find positive effects of the treatment are the presence of a
grandmother in the household (a proxy for family support) and the women’s self-reported
relationship quality with the husband (on a 1-5 scale). They write (p. 849):

24Because the outcome is binary, the lower bound for the average effect corresponds exactly to our lower
bound on the fraction of always-takers affected.
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These results suggest that improved social support within the household, either
through a relationship with the husband or asking grandmothers for help, might
be a mechanism underlying the effectiveness of this CBT intervention.

The tools developed above allow us to test the completeness of these conjectured mechanisms.
Can the presence of a grandmother or improved relationship quality, either individually or
together, explain the impact on financial empowerment, or must there be other mechanisms
at play as well? We begin by analyzing each of these mechanisms separately, and then turn
to studying the combination of the two.

Grandmother Mechanism. We first examine whether the effects of the intervention
can be explained through the binary mechanism of whether a grandmother is present in
the household (measured at the 7-year follow-up). For the outcome, we use an index of
financial empowerment constructed by the authors that combines several outcomes. For
ease of transparency and for conducting inference, we discretize the index into 5 bins based
on the unconditional quantiles of the outcome. Figure 3 shows estimates of P pY “ y,M “

0 | D “ dq for both d “ 1 and d “ 0, similar to Figure 1 for our previous application. If one
imposes monotonicity, then as derived in Section 2 we should have that P pY “ y,M “ 0 |

D “ 1q ď P pY “ y,M “ 0 | D “ 0q for all values of y. As shown in the figure, however, this
inequality appears to be violated at large values of y, suggesting that the outcome for some
treated never-takers improved when receiving the treatment. These violations of the sharp
null are statistically significant (CS p “ 0.02). Our estimates of the lower bound derived in
Corollary 3.2 imply that at least 11 percent of never-takers are affected by the treatment.
Thus, we can reject that the entirety of the treatment effect operates through increased
grandmother presence in the home. These conclusions rely on the monotonicity assumption
that receiving CBT weakly increases the presence of the grandmother; this could be violated
if, for example, some grandmothers were present when the mother was struggling but decided
they were no longer needed as the mother improved. As before, we can explore robustness
to allowing for defiers: our estimated lower bounds on the fraction of never-takers affected
remain positive unless we allow for at least 11 percent of the population to be defiers, or
equivalently, 0.51 defiers per complier.

Relationship quality mechanism. We next examine relationship quality (as of the 7-
year follow-up) as the mechanism, which is measured on a 1-5 scale. We can thus apply the
methods for multi-valued M developed in Section 3. Under the monotonicity assumption
that CBT improves the relationship with the husband, we obtain a point estimate of the
lower bound on the fraction of always-takers affected (pooling across different values of M)
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Figure 3: Testable Implications of the Sharp Null for the Grandmother Mediator in Baranov
et al. (2020)

Note: This figure shows testable implications of the sharp null of full mediation in the Baranov et al. (2020),
similar to Figure 1. The mediator is presence of a grandmother in the home. The bars show estimates of
probabilities of the form P pY disc “ y,M “ 0 | D “ dq, where Y disc is a discretization of the outcome (an
index of mother’s financial empowerment) into 5 bins. Under the sharp null of full mediation, we should
have that P pY disc “ y,M “ 0 | D “ 0q ě P pY disc “ y,M “ 0 | D “ 1q, but this appears to be violated for
large values of y, as indicated with the black arrows.

of 10%, and we reject the sharp null using CS (p “ 0.03).25 There is thus some evidence that
the effect of CBT on financial empowerment does not operate entirely through improvements
in relationship quality. The lower bound on the fraction of always-takers affected remains
positive allowing for up to 8% of the population to be defiers.

Combinations of mechanisms. Can the combination of the grandmother and relationship-
quality mechanisms explain the improvement in financial empowerment? To evaluate this,
we consider the case where M is a vector containing both candidate mechanisms. If we
impose the monotonicity assumption that treatment increases each of the elements of M , we

25The monotonicity assumption requires that the population CDF of M | D “ 1 is everywhere smaller
than the population CDF of M | D “ 0. This is satisfied at three of the four support points of the
empirical distribution. However, the empirical CDF in the treated group is 0.015 larger at M “ 4, although
this difference is not statistically significant from zero (p=0.75). Thus, the empirical distribution violates
monotonicity, although we cannot reject that monotonicity holds in the population. To compute our estimate
of the lower bound on the fraction of always-takers affected using the empirical distribution, we therefore
allow for the minimum number of defiers compatible with the empirical distribution of M | D (0.015). We
apply an analogous approach when considering the grandmother and relationship-quality mechanisms jointly.

35



obtain an estimated lower bound on the fraction of always-takers affected of 7%. However,
this is not statistically significant at conventional levels (CS p “ 0.65). Although the point
estimates suggest some violations, we thus do not significantly reject the null hypothesis that
the combination of these two mechanisms, which the authors interpret broadly as proxies for
“social support within the household”, can explain the effect of CBT on financial empower-
ment. This of course does not establish that no other mechansisms are at play, but rather
that the data are statistically consistent with this null hypothesis at conventional levels.

6 Conclusion

This paper develops tests for the “sharp null of full mediation” that the effect of a treatment D
on an outcome Y operates only through a conjectured set of mediators M . A key observation
is that when M is binary, existing tools for testing the validity of the LATE assumptions
can be used for testing the null. We develop sharp testable implications in a more general
setting that allows for multi-valued and multi-dimensional M , and allows for relaxation of
the monotonicity assumption. Our results also provide lower bounds on the size of the
alternative mechanisms for always-takers. We illustrate the usefulness of these tests in two
empirical applications.

Future work might extend the analysis in this paper in several directions. First, our
analysis focuses on the case where M is discrete. Although one can discretize M under the
assumptions described in Remark 3, an interesting question for future work is whether one
can impose alternative assumptions that allow for testing the sharp null directly when M

is continuous. One potentially fruitful direction is to explore whether methods for testing
instrument validity with a continuous treatment (e.g. D’Haultfœuille, Hoderlein and Sasaki,
2024) can be adapted to this setting. Second, our current analysis allows the potential
outcomes to depend arbitrarily on M , and does not impose any assumptions on how M

is assigned. In some settings, however, it may be reasonable to restrict the magnitude of
the effect of M on Y , or to restrict the degree of endogeneity of M . Incorporating such
restrictions may lead to sharper testable implications.

Finally, the present analysis has focused on settings where D is as good as randomly
assigned, but the testing approach could potentially be extended to other settings such as
difference-in-differences or instrumental variables. One initial observation is that if Z is a
valid instrument for the effect of D on Y , and one imposes the sharp null that D affects Y

only through M , then Z affects Y only through M . Thus, the tools proposed in this paper
can be applied using Z as the “treatment.” Whether these testable implications are sharp
strikes us an interesting question for future work.
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For Online Publication

A Proofs of Results in Main Text

To simplify the notation in proofs, we write M “ k rather than M “ mk unless needed for
clarity.

Proof of Proposition 3.1

Proof. Observe that under Assumption 1, for any Borel set A,

P pY P A,M “ k | D “ 1q “ θkkP pY p1, kq P A | G “ kkq `
ÿ

l:l‰k

θlkP pY p1, kq P A | G “ lkq

(12)

P pY P A,M “ k | D “ 0q “ θkkP pY p0, kq P A | G “ kkq `
ÿ

l:l‰k

θklP pY p0, kq P A | G “ klq

(13)

Combining the previous two equalities, we obtain that

θkk pP pY p1, kq P A | G “ kkq ´ P pY p0, kq P A | G “ kkqq

“ ∆kpAq ´
ÿ

l:l‰k

θlkP pY p1, kq P A | G “ lkq `
ÿ

l:l‰k

θklP pY p0, kq P A | G “ klq

ě ∆kpAq ´
ÿ

l:l‰k

θlk (14)

where ∆kpAq “ P pY P A,M “ k | D “ 1q ´ P pY P A,M “ k | D “ 0q, and the inequality
uses the fact that probabilities are bounded between zero and 1. Recall that the total
variation (TV) distance between Y p1, kq | G “ kk and Y p0, kq | G “ kk is given by

TVk :“ sup
A

pP pY p1, kq P A | G “ kkq ´ P pY p0, kq P A | G “ kkqq

and hence (14) implies that

θkkTVk ě sup
A

∆kpAq ´
ÿ

l:l‰k

θlk.

Note that Assumption 1 implies that P pM “ k | D “ 1q “ P pMp1q “ kq “ θkk `
ř

l:l‰k θlk,
so the lower-bound in the previous display can alternatively be written as supA ∆kpAq ´

pP pM “ k | D “ 1q ´ θkkq. To complete the proof, it thus suffices to establish that TVk ď

1



P pY p1, kq ‰ Y p0, kq | G “ kkq. Borusyak (2015) showed that the total variation distance
is a (sharp) lower bound on the fraction of units affected by the treatment, but we provide
a proof for completeness. In particular, recall that the TV distance is the Wasserstein-0
distance (e.g. Villani, 2009), and thus

TVk “ inf
Q s.t.

pY p1,kq,Y p0,kqq„Q
Y p1,kq„P1k

Y p0,kq„P0k

EQr1rY p1, kq ‰ Y p0, kqss,

where Pdk is the marginal distribution of Y pd, kq | G “ kk. Since EQr1rY p1, kq ‰ Y p0, kqs “

PQpY p1, kq ‰ Y p0, kq, it follows (from the definition of the inf) that P pY p1, kq ‰ Y p0, kq |

G “ kkq ě TVk, which completes the proof.

Proof of Corollary 3.2

Proof. The inequality follows immediately from dividing both sides of (3) by θkk and taking
inf’s on both sides. To obtain the equality, observe that

inf
θPΘI

1

θkk

˜

sup
A

∆kpAq ´
ÿ

l:l‰k

θlk

¸

“ inf
θPΘI

1

θkk

ˆ

sup
A

∆kpAq ´ P pM “ k | D “ 1q ` θkk

˙

,

using the fact that P pM “ k | D “ 1q “ θkk `
ř

l:l‰k θlk for any θ P ΘI from the properties
of the identity set. To establish that the inf is achieved at θmin

kk , it suffices to establish that
supA ∆kpAq ´ P pM “ k | D “ 1q ď 0, in which case the expression inside the inf in the
previous display is increasing in θkk. However, observe that

sup
A

∆kpAq “ sup
A

rP pY P A,M “ k | D “ 1q ´ P pY P A,M “ k | D “ 0qs

ď sup
A

P pY P A,M “ k | D “ 1q

“ P pM “ k | D “ 1q,

which completes the proof.

Lemma A.1. The distributions Y | M “ m,D “ d have a Radon-Nikodym density with
respect to a common dominating, positive σ-finite measure for all m, d such that P pM “ m |

D “ dq ą 0.

Proof. Let µp¨ | M “ m,D “ dq be the probability measure of Y | M “ d,D “ d. Since
there are finitely many combinations of m, d such that P pM “ m | D “ dq ą 0, it follows

2



that µ̄p¨q :“
ř

m,d:P pM“d|D“dqą0 µp¨ | M “ m,D “ dq is a σ-finite dominating measure. Hence
the densities exist by the Radon-Nikodym theorem.

In what follows, we let fY |M“m,D“d denote the density of Y | M “ m,D “ d with respect
to the dominating measure derived in Lemma A.1, and we define the partial density by
fY,M“k|D“d “ fY |M“m,D“d{P pM “ m | D “ dq.

Lemma A.2. Suppose that for some θ P ΘI , there exist valid densities fY pd,kq|G“kk (with
respect to the dominating measure derived in Lemma A.1) such that for every k with θkk ą 0,

ÿ

l

θlkfY p1,kq|G“lk “ fY,M“k|D“1 (15)

ÿ

l

θklfY p0,kq|G“kl “ fY,M“k|D“0 (16)

θkk

ż

pfY p1,kq|G“kk ´ fY p0,kq|G“kkq` “ ηk (17)

for ηk defined to be the left-hand side of (7).26 Then there exists a distribution P ˚ for
pY p¨, ¨q,Mp¨q, Dq consistent with the observable data—i.e. such that pY pD,MpDqq,MpDq, Dq „

P under P ˚—and such that Assumptions 1 and 2 hold, and ηk “ θkkνk for all k, where
νk “ P ˚pY p1, kq ‰ Y p0, kq | G “ kkq if P ˚pG “ kkq “ θkk ą 0 and νk “ 0 otherwise.

Proof. Consider P ˚ such P ˚pD “ 1q “ P pD “ 1q and such that D KK pY p¨, ¨q,Mp¨qq under
P ˚. Likewise, let P ˚pMp0q “ l,Mp1q “ kq “ θlk, which is a valid marginal distribution for
pMp0q,Mp1qq by the definition of the identified set ΘI . The distribution of the observable
data under P ˚ can then be factored as

P ˚
pY P A,M “ k,D “ dq “

$

&

%

´

ř

l θlk
ş

A
fP˚

Y p1,kq|G“lk

¯

P ˚pD “ 1q if d “ 1
´

ř

l θkl
ş

A
fP˚

Y p0,kq|G“kl

¯

P ˚pD “ 0q if d “ 1

Likewise, the observable data can be factored as

P pY P A,M “ k,D “ dq “

ˆ
ż

A

fY,M“k|D“d

˙

P pD “ dq.

26In (20), the integral is over the sample space for Y . We adopt this convention through the proofs, unless
explicitly noted otherwise.

3



It follows that the distribution of the data under P ˚ matches P if, for all k,

ÿ

l

θlkf
P˚

Y p1,kq|G“lk “ fY,M“k|D“1

ÿ

l

θklf
P˚

Y p0,kq|G“kl “ fY,M“k|D“0.

For k such that θkk ą 0, by assumption there exist valid densities fY p1,kq|G“lk such that setting
fP˚

Y p1,kq|G“lk “ fY p1,kq|G“lk satisfies the first equation in the previous display, and analogously
setting fP˚

Y p0,kq|G“kl “ fY p0,kq|G“kl satisfies the second equation in the second display. For
k such that θkk “ 0, we can satisfy the first equation in the previous display by setting
fP˚

Y p1,kq|G“lk “ fY,M“k|D“1{P pM “ k | D “ 1q, where we use the fact that
ř

l θlk “ P pM “

k | D “ 1q by the properties of the identified set. Analogously, we can satisfy the second
equation in the previous display by setting fP˚

Y p0,kq|G“kl “ fY,M“k|D“0{P pM “ k | D “ 0q.
Note that so far we have only specified the marginal distributions of Y pd, kq | G “ kk

but not the coupling of Y p1, kq, Y p0, kq given G “ kk under P ˚. Note, however, that for
θkk ą 0, the total variation distance between the specified marginals of Y p1, kq | G “ kk and
Y p0, kq | G “ kk is given by

TVk “

ż

´

fP˚

Y p1,kq|G“kk ´ fP˚

Y p0,kq|G“kk

¯

`
“ ηk{θkk,

where the second equality uses (17). Recall that for any two marginal distributions G and
G1 with total variation distance tv, there exists a coupling such P pG ‰ G1q “ tv (see, e.g.,
Theorem 1 in Angel and Spinka (2021)). We can thus specify P ˚ to use this coupling for
Y p1, kq, Y p0, kq given G “ kk, in which case P ˚pY p1, kq ‰ Y p0, kq | G “ kkq “ ηk{θkk, as
desired.27 On the other hand, if θkk “ 0, then

ř

l:l‰k θlk “ P pM “ k | D “ 1q from the
properties of the identified set, and thus

sup
A

rP pY P A,M “ k | D “ 1q ´ P pY P A,M “ k | D “ 1qs

ď sup
A

rP pY P A,M “ k | D “ 1qs

“P pM “ k | D “ 1q

“
ÿ

l:l‰k

θlk

27Note that we have not specified the coupling between Y pd, kq and Y pd, k1q under P˚ for k ‰ k1; since the
coupling does not affect the observable distribution or the total variation distances of interest, any arbitrary
coupling will suffice. Likewise, we have not specified the potential outcomes under treatment m R tl, ku for
group G “ lk. Again, any specification suffices.
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and hence ηk “ 0 “ θkkνk. We have thus verified that ηk “ θkkνk for all k.

Proof of Proposition 3.2

Proof. Let fY,M“k|D“1 denote the partial density of Y,M “ k | D “ 1 (with respect to the
dominating measure derived in Lemma A.1), and let ∆kpAq :“ P pY P A,M “ k | D “

1q ´ P pY P A,M “ k | D “ 0q. Let ηk denote the left-hand side of (7). By Lemma A.2, it
suffices to construct valid densities fY pd,kq|G“kk such that for every k with θkk ą 0,

ÿ

l

θlkfY p1,kq|G“lk “ fY,M“k|D“1 (18)

ÿ

l

θklfY p0,kq|G“kl “ fY,M“k|D“0 (19)

θkk

ż

pfY p1,kq|G“kk ´ fY p0,kq|G“kkq` “ ηk. (20)

Now, consider k such that θkk ą 0. Assume first that supA ∆kpAq ´
ř

l:l‰k θlk ą 0.
Define fmin :“ mintfY,M“k|D“1, fY,M“k|D“0u. Suppose first that fmin “ 0 (a.e.). Consider
the densities of the potential outcomes

fY p1,kq|G“g “ fY,M“k|D“1{P pM “ k | D “ 1q for all g

fY p0,kq|G“g “ fY,M“k|D“0{P pM “ k | D “ 0q for all g.

By construction, the densities are non-negative and integrate to 1, and thus are valid den-
sities. Since the properties of the identified set ΘI imply that

ř

l θlk “ P pM “ k | D “ 1q

and
ř

l θkl “ P pM “ k | D “ 0q, it is immediate that (18) and (19) hold. Moreover,
since fmin “ 0, it follows that fY,M“k|D“0 “ 0 whenever fY,M“k|D“1 ą 0, and consequently
pfY p1,kq|G“kk ´ fY p0,kq|G“kkq` “ fY p1,kq|G“kk. It follows that

θkk

ż

pfY p1,kq|G“kk ´ fY p0,kq|G“kkq` “ θkk

ż

fY p1,kq|G“kk “ θkk.
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Note, however, that

ηk “

ż

`

fY,M“k|D“1 ´ fY,M“k|D“0

˘

`
´

ÿ

l:l‰k

θlk

“

ż

fY,M“k|D“1 ´
ÿ

l:l‰k

θlk

“P pM “ k | D “ 1q ´
ÿ

l:l‰k

θlk

“θkk

where the first equality uses supA ∆KpAq “
ş `

fY,M“k|D“1 ´ fY,M“k|D“0

˘

`
; the second equal-

ity uses the fact that fmin “ 0, and thus fY,M“k|D“0 is zero whenever fY,M“k|D“1 ą 0; and
the final equality uses the fact that P pM “ k | D “ 1q “ θkk `

ř

l:l‰k θlk by the properties
of the identified set ΘI . It follows from the previous two displays that (20) holds.

Next, suppose that fmin ą 0 on a set of positive measure. Then
ş

fmin ą 0, and since
fmin ě 0 by construction, it follows that f̃min “ fmin{

ş

fmin is a valid densitiy. Define
fd :“ fY,M“k|D“d ´ fmin and f̃d :“ fd{

ş

fd. We claim that the f̃d are valid densities. First,
observe from the definition of fmin that fd ě 0 everywhere. To show that f̃d is a valid density,
it thus remains to show that

ş

fd ą 0, in which case the f̃d integrate to 1. Observe, however,
that by assumption

0 ă sup
A

∆kpAq “

ż

pfY,M“k|D“1 ´ fY,M“k|D“0q` “

ż

f1

where the second equality follows from the fact that pA ´ Bq` “ A ´ mintA,Bu and the
definition of f1. We thus see that

ş

f1 ą 0. Additionally, if f0 “ 0 almost everywhere, then
pfY,M“k|D“1 ´ fY,M“k|D“0q` “ fY,M“k|D“1 ´ fY,M“k|D“0 a.e., and thus

sup
A

∆kpAq “

ż

fY,M“k|D“1 ´ fY,M“k|D“0

“P pM “ k | D “ 1q ´ P pM “ k | D “ 0q

“
ÿ

l:l‰k

θlk ´
ÿ

l:l‰k

θkl

ď
ÿ

l:l‰k

θlk,

which implies that supA ∆kpAq ´
ř

l:l‰k θlk ď 0, a contradiction. Hence, we see that f0 ą 0

on a set of positive measure, and thus
ş

f0 ą 0, completing the proof that the f̃d are valid
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densities. Now, let νk “ ηk{θkk, and construct the densities as follows:

fY pd,kq|G“kk “ p1 ´ νkqf̃min ` νkf̃d for d “ 0, 1

fY p1,kq|G“g “ f̃1 for g P tlk : l ‰ ku

fY p0,kq|G“g “ f̃0 for g P tkl : l ‰ ku.

To verify that fY pd,kq|G“kk is a valid density, we will show that νk P r0, 1s, in which case
fY pd,kq|G“kk is a convex combination of valid densities and hence a valid density. Note that
νk “ ηk{θkk, where ηk is defined to be the left-hand side of (7), which is positive by con-
struction, and θkk ą 0, from which we see that νk ě 0. To show that νk ď 1, observe
that

νk “
supA rP pY P A,M “ k | D “ 1q ´ P pY P A,M “ k | D “ 0qs ´

ř

l:l‰k θlk

θkk

ď
supA rP pY P A,M “ k | D “ 1qs ´

ř

l:l‰k θlk

θkk

“
P pM “ k | D “ 1q ´

ř

l:l‰k θlk

θkk

“
θkk
θkk

.

We have thus verified that the density for fY pd,kq|G“kk is valid.
We now verify that the specified densities satisfy (18). Note that

ÿ

l

θlkfY p1,kq|G“lk “

˜

ÿ

l:l‰k

θlk ` θkkνk

¸

f1
ş

f1
` θkkp1 ´ νkq

fmin
ş

fmin

.

Since f1 ` fmin “ fY,M“k|D“1 by definition of f1, to verify (18) it suffices to verify that
`
ř

l:l‰k θlk ` θkkνk
˘

{
ş

f1 “ 1 and θkkp1 ´ νkq{
ş

fmin “ 1. Observe, however, that

νk “
1

θkk

˜

sup
A

∆kpAq ´
ÿ

l:l‰k

θlk

¸

“
1

θkk

˜

ż

pfY,M“k|D“1 ´ fminq ´
ÿ

l:l‰k

θlk

¸

“
1

θkk

˜

P pM “ k | D “ 1q ´

ż

fmin ´
ÿ

l:l‰k

θlk

¸

“
1

θkk

ˆ

θkk ´

ż

fmin

˙

“ 1 ´

ş

fmin

θkk

7



where the first equality uses the definition of νk; the second equality uses the fact that
ş

pf ´ gq` “
ş

f ´mintf, gu; the third equality uses the definition of the partial density; and
the fourth equality uses the fact that P pM “ k | D “ 1q “

ř

l:l‰k θlk ` θkk since θ P ΘI .
It is then immediate from the previous display that θkkp1 ´ νkq{

ş

fmin “ 1. To show that
`
ř

l:l‰k θlk ` θkkνk
˘

{
ş

f1 “ 1, we again use the fact that P pM “ k | D “ 1q “
ř

l:l‰k θlk`θkk,
to obtain that

ř

l:l‰k θlk ` θkkνk “ P pM “ k | D “ 1q ´ p1 ´ νkqθkk “ P pM “ k | D “

1q ´
ş

fmin, where the second equality uses the result in the previous display. However, from
the definition of f1,

ş

f1 “
ş

fY,M“k|D“1 ´ fmin “ P pM “ k | D “ 1q ´
ş

fmin, and we thus
see that

`
ř

l:l‰k θlk ` θkkνk
˘

{
ş

f1 “ 1, as needed to verify (18). An analogous argument can
be used to verify (19).

To show that the specified densities match (20), note that the construction of

f̃d 9 fY,M“k|D“d ´ fmin

implies that f̃0 “ 0 whenever pf̃1 ´ f̃0q` ą 0. It follows that
ş

pf̃1 ´ f̃0q` “
ş

f̃1 “ 1. Hence,

θkk

ż

pfY p1,kq|G“kk ´ fY p0,kq|G“kkq` “ θkk

ż

νkpf̃1 ´ f̃0q` “ θkkνk “ ηk,

as needed.
Next, consider the case where supA∆kpAq ´

ř

l:l‰k θlk ď 0. Note that this implies that
ηk “ 0. Consider the densities

fY p1,kq|G“kk “ fY p0,kq|G“kk “ fmin{

ż

fmin

fY p1,kq|G“g “
1

ř

l:l‰k θlk

ˆ

fY,M“k|D“1 ´ θkk
fmin

ş

fmin

˙

for all g P tlk : l ‰ ku

fY p0,kq|G“g “
1

ř

l:l‰k θkl

ˆ

fY,M“k|D“0 ´ θkk
fmin

ş

fmin

˙

for all g P tkl : l ‰ ku

We now verify that the specified densities are in fact proper. First, we showed above that
if fmin “ 0 (a.e.), then ηk “ θkk ą 0. Hence, since ηk “ 0, it must be that

ş

fmin ą 0, so that
fmin{

ş

fmin is a proper density. Next, we verify that the specified densities for g ‰ kk are
non-negative. Recall that by assumption supA ∆kpAq ´

ř

l:l‰k θlk ď 0. Note, further, that

sup
A

∆kpAq “

ż

fY,M“k|D“1 ´ fmin “ P pM “ k | D “ 1q ´

ż

fmin,

8



and hence
P pM “ k | D “ 1q ´

ż

fmin ´
ÿ

l:l‰k

θlk ď 0.

However, since P pM “ k | D “ 1q ´
ř

l:l‰k θlk “ θkk by the properties of the identified
set ΘI , we see from the previous display that

ş

fmin ě θkk, and thus θkk
ş

fmin
ď 1. But since

fY,M“k|D“d ě fmin by construction, it follows that fY,M“k|D“d ´
θkk

ş

fmin
fmin ě 0, and hence

the specified densities for fY pd,kq|G“g for g ‰ kk are non-negative. To see that these densities
integrate to 1, observe that

ż
ˆ

fY,M“k|D“1 ´
θkk

ş

fmin

fmin

˙

“ P pM “ k | D “ 1q ´ θkk “
ÿ

l:l‰k

θlk

and similarly

ż
ˆ

fY,M“k|D“0 ´
θkk

ş

fmin

fmin

˙

“ P pM “ k | D “ 0q ´ θkk “
ÿ

l:l‰k

θkl.

Finally, it is trivial to verify from the construction of the densities above that equations
(18), (19), and (20) hold.

Proof of Lemma 3.1 To prove Lemma 3.1, we prove the following result, which generalizes
the bounds given in Lemma 3.1 to the case where Y may not be continuously distributed.
For notation, for a distribution F , let F´1puq “ infty : F pyq ě uu be the uth quantile of F .

Lemma A.3. Suppose Assumption 1 holds. Then if θ̃1kk ą 0,

1

θ̃1kk

ż θ̃1kk

0

F´1
Y |D“1,M“mk

puq du ď ErY p1, kq | G “ kks ď
1

θ̃1kk

ż 1

1´θ̃1kk

F´1
Y |D“1,M“mk

puq

and if θ̃0kk ą 0,

1

θ̃0kk

ż θ̃0kk

0

F´1
Y |D“0,M“mk

puq du ď ErY p0, kq | G “ kks ď
1

θ̃0kk

ż 1

1´θ̃0kk

F´1
Y |D“0,M“mk

puq.

The bounds are sharp in the sense that there exists a distribution P ˚ for pY p¨, ¨q,Mp¨q, Dq

consistent with the observable data and with θlk “ P ˚pG “ lkq such that the bounds hold
with equality. If the distributions of Y | D “ d,M “ mk are continuous, then the bounds
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can equivalently be written as

ErY | M “ mk, D “ 1, Y ď y1
θ̃1kk

s ď ErY p1, kq | G “ kks ď ErY | M “ mk, D “ 1, Y ě y1
1´θ̃1kk

s

and

ErY | M “ mk, D “ 0, Y ď y0
θ̃0kk

s ď ErY p0, kq | G “ kks ď ErY | M “ mk, D “ 0, Y ě y0
1´θ̃0kk

s,

where ydq :“ F´1
Y |D“d,M“mk

pqq is the qth quantile of Y | D “ d,M “ mk.

Proof. We begin by deriving the bounds for ErY p1, kq | G “ kks. Observe that under
Assumption 1,

FY |D“1,M“k “ θ̃1kkFY p1,kq|G“kk ` p1 ´ θ̃1kkqH,

where H “ 1
1´θ̃1lk

ř

l:l‰lk FY p1,kq|G“lk is a valid CDF (corresponding to a mixture of the distri-
butions of Y p1, kq | G “ g for types g “ lk, l ‰ k). Hence,

FY p1,kq|G“kk “
1

θ̃1kk
FY |D“1,M“k ´

1 ´ θ̃1kk
θ̃1kk

H.

From the fact that CDFs are bounded between 0 and 1, it follows that

max

#

1

θ̃1kk
FY |D“1,M“k ´

1 ´ θ̃1kk
θ̃1kk

, 0

+

ď FY p1,kq|G“kk ď min

#

1

θ̃1kk
FY |D“1,M“k, 1

+

Recall that if F1 ď F2 everywhere for CDFs F1 and F2, the F1 distribution first-order
stochastically dominates the F2 distribution, and thus EF1rY s ě EF2rY s. Hence, we have
that EFub

rY p1, kqs ď ErY p1, kq | G “ kks ď EFlb
rY p1, kqs, where Flb, Fub are respectively the

lower and upper bounds on the CDF given in the previous display.
Now, let U be uniform on r0, 1s, and consider the random variable Yub „ F´1

Y |D“1,M“kpUq |

U P r0, θ̃1kks. Observe that

FYub
pyq “ P pF´1

Y |D“1,M“kpUq ě y | U P r0, θ̃1kksq

“ P pFY |D“1,M“kpyq ď U | U P r0, θ̃1kksq

“ min

#

1

θ̃1kk
FY |D“1,M“kpyq, 1

+

“ Fubpyq.

It follows that EFub
rY p1, kqs “ ErF´1

Y |D“1,M“kpUq | U P r0, θ̃1kkss “ 1
θ̃1kk

şθ̃1kk
0

F´1
Y |D“1,M“kpuq du,

which gives the lower-bound on ErY p1, kq | G “ kks given in the lemma. When Y is
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continuously distributed, note that Yub „

´

Y | D “ 1,M “ k, Y ď yθ̃1kk

¯

, and thus we can
also write the lower-bound as ErY | D “ 1,M “ k, Y ď yθ̃1kk

s. Analogously, we can verify
that the random variable Ylb „ F´1

Y |D“1,M“kpUq | U P r1 ´ θ̃1kk, 1s has the CDF Fub, which
gives the upper bound on ErY p1, kq | G “ kks given in the proposition.

To show that the lower bound is sharp, consider P ˚ such that D KK Y p¨, ¨q,Mp¨q and
P ˚pMp0q “ l,Mp1q “ kq “ θlk, and the marginal distributions of the potential outcomes are
such that Y p1, kq | G “ kk „ Ylb and Y p1, kq | G “ lk „ F´1

Y |D“1,M“kpUq | U P rθ̃1kk, 1s for all
g “ lk with l ‰ k. Then the distribution of Y | M “ k,D “ 1 is given by the mixture:

θ̃1kk

´

F´1
Y |D“1,M“kpUq | U P r0, θ̃1kks

¯

`p1´θ̃1kkq

´

F´1
Y |D“1,M“kpUq | U P rθ̃1kk, 1s

¯

„ F´1
Y |D“1,M“kpUq

Recalling that if Y has CDF F , then Y „ F´1pUq, we see that the implied distribution of
Y | M “ k,D “ 1 under P ˚ matches the observable data. The sharpness of the upper bound
can be shown analogously. Sharp bounds for ErY p0, kq | G “ kks can be shown analogously
to those for ErY p1, kq | G “ kks.

Proof of Proposition 3.3

Proof. From Lemma A.3, we have that

inf
θ̃dkkPΘ̃I

ErF´1
Y |D“d,M“kpUq | U P r0, θ̃dkkss

ďErY p1, kq | G “ kks

ď sup
θ̃dkkPΘ̃I

ErF´1
Y |D“d,M“kpUq | U P r1 ´ θ̃dkk, 1ss

for U uniformly distributed and Θ̃I the set of values for θ̃dkk “ θkk{P pM “ k | D “ dq

consistent with θ P ΘI . Since F´1
Y |D“d,M“kpUq is increasing in U , it follows that the inf and

sup are both obtained at θ̃min
kk . The bounds for ADEk “ ErY p1, kq ´ Y p0, kq | G “ kks

follow simply from differencing the bounds for the two potential outcomes in the previous
display. Sharpness for the bounds for ADEk follows from the fact that, as shown in the
proof to Lemma A.3, for each d “ 0, 1, the bounds for ErY pd, kq | G “ kks can be achieved
only by specifying the marginals of Y pd, kq | G “ kk, and thus the bounds for both potential
outcomes can be achieved simultaneously.

11



B Additional Theoretical Results

B.1 Closed-form solution for θkk with fully-ordered M

The following result formalizes the closed-form solution for θmin
kk when M is fully-ordered

and we impose monotonicity, as discussed in Remark 1.

Proposition B.1. Suppose M is fully-ordered, so that m0 ă m1 ă ... ă mK´1. Suppose
Assumptions 1 and 2 are satisfied, where R “ tθ P ∆ : θlk “ 0 if ml ą mku imposes the
monotonicity assumption that Mp1q ě Mp0q. Then

θkk ě P pM “ mk | D “ 1q´mintP pM “ mk | D “ 1q, P pM ě mk | D “ 1q´P pM ě mk | D “ 0qu

for all θ P ΘI , and there exists θ P ΘI such that inequality holds with equality simultaenously
for all k.

Proof. For simplicity of notation, without loss of generality let mk “ k. We will show that
for all θ P ΘI ,

ÿ

l:lăk

θlk ď mintP pMp1q “ kq, P pMp1q ě kq ´ P pMp0q ě kqu

“ mintP pM “ k | D “ 1q, P pM ě k | D “ 1q ´ P pM ě k | D “ 0qu (21)

for k “ 0, ..., K´1, and there exists some θ P ΘI such that the inequality holds with equality
for all k. The result in the Proposition then follows immediately from the fact that, under
the imposed monotonicity assumption, θkk “ P pM “ k | D “ 1q ´

ř

l:lăk θlk for all θ P ΘI .
We first show the inequality in (21). Note that monotonicity implies that

P pMp1q “ kq “ θkk `
ÿ

l:lăk

θlk,

from which it is immediate that

ÿ

l:lăk

θlk ď P pMp1q “ kq.

Moreover, we have that

P pMp1q ě kq ´ P pMp0q ě kq “
ÿ

l:lăk

ÿ

k1:k1ěk

θlk1 ě
ÿ

l:lăk

θlk,

which together with the previous display gives the inequality in (21). The equality in the
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second line of (21) follows immediately from independence (Assumption 1).
We next show there exists a θ P ΘI that satisfies all of the inequalities with equality. To

obey monotonicity, we set θlk “ 0 whenever k ă l.
We now recursively set the remaining θlk. Start with k “ 0. Set θ00 “ P pMp1q “ 0q. Note

that monotonicity implies that P pMp1q “ 0q ď P pMp0q “ 0q. It is then straightforward to
verify that the following properties hold for k̄ “ 0 (in what follows, we interpret sums over
empty sets as zero):

(i)
ř

l:lăj θlj “ mintP pMp1q “ jq, P pMp1q ě jq ´ P pMp0q ě jqu for all j ď k̄

(ii)
ř

l:lďj θlj “ P pMp1q “ jq for all j ď k̄

(iii)
ř

l:lďk̄ θjl ď P pMp0q “ jq for all j ď k̄.

Now, suppose that for some k ě 1, θlj has been determined for all l and all j “ 0, ..., k´1,
and properties (i)-(iii) hold for all k̄ “ 0, ..., k ´ 1. Set θkk “ P pMp1q “ kq ´mintP pMp1q “

kq, P pMp1q ě kq ´ P pMp0q ě kqu. For l “ 0, ..., k ´ 1, proceed as follows

1. If
ř

l1:l1ăl θl1k “ P pMp1q ě kq ´ P pMp0q ě kq, then set θlk “ 0.

2. Otherwise, set

θlk “ min

#

P pMp1q ě kq ´ P pMp0q ě kq ´
ÿ

l1:l1ăl

θl1k , P pMp0q “ lq ´
ÿ

k1:k1ăk

θlk1

+

.

Note that the first term in the minimum is weakly positive by construction while property
(iii) ensures that the second term in the minimum is non-negative, so that θlk ě 0. We claim
that the construction above implies that

ÿ

l:lăk

θlk “ mintP pMp1q “ kq, P pMp1q ě kq ´ P pMp0q ě kqu

To see why this is the case, suppose towards contradiction that

ÿ

l:lăk

θlk ă mintP pMp1q “ kq, P pMp1q ě kq ´ P pMp0q ě kqu.

Then θlk is always set via step 2 in the procedure above. However, the construction of θlk in
step 2 combined with the fact that

ř

l:lăk θlk ă P pMp1q ě kq ´ P pMp0q ě kq implies that
for all l “ 0, ..., k ´ 1, we have that

θlk “ P pMp0q “ lq ´
ÿ

j:jăk

θlj.
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Summing over l ă k, we obtain that

ÿ

l:lăk

θlk “
ÿ

l:lăk

P pMp0q “ lq ´
ÿ

l:lăk

ÿ

j:jăk

θlj

“
ÿ

l:lăk

P pMp0q “ lq ´
ÿ

j:jăk

ÿ

l:lăk

θlj (Reversing order of sums)

“
ÿ

l:lăk

P pMp0q “ lq ´
ÿ

j:jăk

ÿ

l:lďj

θlj (Using monotonicity)

“
ÿ

l:lăk

P pMp0q “ lq ´
ÿ

j:jăk

P pMp1q “ jq (Using property (ii))

“ P pMp0q ă kq ´ P pMp1q ă kq

“ P pMp1q ě kq ´ P pMp0q ě kq

which is a contradiction.
It follows that property (i) holds also for k̄ “ k. Likewise, the construction of θkk combined
with property (i) implies that property (ii) holds for k̄ “ k. Finally, the construction of θlk
(particularly step 2) guarantees that property (iii) holds for k̄ “ k as well.

By induction we can obtain θ satisfying properties (i) through (iii) for all k̄ “ 0, ..., K´1.
The resulting θ satisfies monotonicity and is bounded between 0 and 1 by construction.
Property (ii) guarantees that θ matches the marginals of M | D “ 1, i.e.

ř

l θlk “ P pM “

k | D “ 1q.
It thus remains only to establish that θ matches the marginal distribution of M | D “ 0.

Property (ii) implies that
ř

l θjl ď P pMp0q “ jq. To establish equality for all j, it thus
suffices to show that

ř

j

ř

l θjl ě
ř

j P pMp0q “ jq “ 1. Note, however, that from property
(ii) and monotonicity, we have

ÿ

j

ÿ

l

θjl “
ÿ

j

˜

ÿ

l:lďj

θlj

¸

“
ÿ

j

P pMp1q “ jq “ 1,

which completes the proof.

C Additional Monte Carlo Results

Since implementing the moment inequality based inference methods require discretizing the
outcome variable, we report additional simulation results with different levels of discretization
to numerically assess the sensitivity to such a discretization. Appendix Table 1 reports the
results for the DGPs based on Baranov et al. (2020) where the considered mediator is the
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binary indicator for the presence of a grandmother, when the outcome is binned into either 2
or 10 bins. Appendix Table 2 reports analogous results, but for the case where the considered
mediator is the relationship-quality score.

D Additional Empirical Results

Alternative sample for Bursztyn et al. (2020). In our application to Bursztyn et al.
(2020) in the main text, we restrict attention to the 75 percent of men who under-estimate
other men’s openness at baseline, which increases the plausibility of the monotonicity as-
sumption. We now present analogous results using the full sample, which are similar. Ap-
pendix Figure 1 is analogous to Figure 1 but using the full sample, with similar qualitative
patterns. The estimated lower bound on the fraction of never-takers affected, imposing
monotonicity, is 8 percent, and bounds for the average effect for never-takers are 0.08 to
0.13. The lower bound on the fraction affected remains non-zero allowing for up to 5 percent
of the population to be defiers.

Appendix Figure 1: Illustration of Testable Implications in Bursztyn et al. (2020) Using Full
Sample

Note: This figure is analogous to Figure 1 except it uses the full sample rather than restricting to men who
initially underestimate others’ beliefs.

Alternative tests. In the main text, we report statistical tests of the sharp null using
CS. Appendix Table 3 reports analogous test results using the tests of ARP and FSST.28

28Recall that the reported p-value is the smallest value of α for which the test rejects. Since ARP uses a
two-stage procedure, it is difficult to analytically compute the p-value. We therefore compute the test for
α values on a grid with interval-length 0.01 between 0.01 and 0.1 and interval-length 0.1 between 0.15 and
0.95, and report the smallest grid point at which the test rejects.
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Appendix Table 1: Simulation results for Baranov et al. (2020) with binary M and different
discretizations of the outcome

Panel A: Baranov et al, 40 clusters, 2 bins
ν̄ LB ARP CS K FSSTdd FSSTndd

t=0 0 0.086 0.078 0.050 0.136 0.126
t=0.5 0.134 0.264 0.256 0.064 0.314 0.280
t=1 0.283 0.828 0.822 0.422 0.844 0.830

Panel B: Baranov et al, 80 clusters, 2 bins
ν̄ LB ARP CS K FSSTdd FSSTndd

t=0 0 0.046 0.040 0.040 0.098 0.090
t=0.5 0.134 0.444 0.430 0.160 0.456 0.434
t=1 0.283 0.978 0.976 0.846 0.976 0.976

Panel C: Baranov et al, 200 clusters, 2 bins
ν̄ LB ARP CS K FSSTdd FSSTndd

t=0 0 0.052 0.044 0.030 0.082 0.078
t=0.5 0.134 0.822 0.816 0.618 0.818 0.796
t=1 0.283 1 1 1 1 1

Panel D: Baranov et al, 40 clusters, 10 bins
ν̄ LB ARP CS K FSSTdd FSSTndd

t=0 0 0.072 0.188 0.050 0.324 0.262
t=0.5 0.134 0.164 0.246 0.064 0.340 0.308
t=1 0.283 0.530 0.658 0.422 0.774 0.720

Panel E: Baranov et al, 80 clusters, 10 bins
ν̄ LB ARP CS K FSSTdd FSSTndd

t=0 0 0.052 0.086 0.040 0.208 0.158
t=0.5 0.134 0.272 0.314 0.160 0.436 0.368
t=1 0.283 0.798 0.924 0.846 0.960 0.942

Panel F: Baranov et al, 200 clusters, 10 bins
ν̄ LB ARP CS K FSSTdd FSSTndd

t=0 0 0.042 0.048 0.030 0.122 0.100
t=0.5 0.134 0.636 0.742 0.618 0.804 0.754
t=1 0.283 0.998 1 1 1 1

Notes: This table show simulation results analogous to Panels B-D of
Table 1, with 2 and 10 bins used for discretizing the outcome variable.
The first column shows the value of t, which determines the distance from
the null, as described in the main text. The second column shows the
lower-bound on the fraction of always-takers affected by treatment, ν̄.
The remaining columns contain the rejection probabilities for each of the
inference methods considered. Panels A-C use 2 bins to discretize the
outcome variable and Panels D-F use 10 bins. Since Kitagawa (2015)
does not require a discrete outcome variable, we use the outcome variable
as-is when running this test (hence the results for K do not depend on the
number of bins). Rejection probabilities are computed over 500 simulation
draws, under a 5% significance level.
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Appendix Table 2: Simulation results for Baranov et al. (2020) with non-binary M and
different discretizations of the outcome

Panel A: Baranov et al, 40 clusters, 2 bins
ν̄ LB ARP CS FSSTdd FSSTndd

t=0 0 0.056 0.092 0.150 0.112
t=0.5 0.119 0.092 0.206 0.356 0.326
t=1 0.255 0.290 0.856 0.944 0.922

Panel B: Baranov et al, 80 clusters, 2 bins
ν̄ LB ARP CS FSSTdd FSSTndd

t=0 0 0.054 0.058 0.146 0.110
t=0.5 0.119 0.110 0.392 0.546 0.514
t=1 0.255 0.288 0.986 0.998 0.998

Panel C: Baranov et al, 200 clusters, 2 bins
ν̄ LB ARP CS FSSTdd FSSTndd

t=0 0 0.042 0.048 0.100 0.076
t=0.5 0.119 0.104 0.792 0.892 0.860
t=1 0.255 0.422 1 1 1

Panel D: Baranov et al, 40 clusters, 10 bins
ν̄ LB ARP CS FSSTdd FSSTndd

t=0 0 0.038 0.102 0.386 0.264
t=0.5 0.119 0.036 0.256 0.556 0.464
t=1 0.255 0.126 0.818 0.960 0.932

Panel E: Baranov et al, 80 clusters, 10 bins
ν̄ LB ARP CS FSSTdd FSSTndd

t=0 0 0.048 0.032 0.282 0.176
t=0.5 0.119 0.050 0.238 0.650 0.566
t=1 0.255 0.134 0.986 0.998 0.998

Panel F: Baranov et al, 200 clusters, 10 bins
ν̄ LB ARP CS FSSTdd FSSTndd

t=0 0 0.048 0.006 0.182 0.094
t=0.5 0.119 0.068 0.464 0.936 0.894
t=1 0.255 0.264 1 1 1

Notes: This table show simulation results analogous to Table 2,
with 2 and 10 bins used for discretizing the outcome variable.
The first column shows the value of t, which determines the dis-
tance from the null, as described in the main text. The second
column shows the lower-bound on the fraction of always-takers
affected by treatment, ν̄. The remaining columns contain the
rejection probabilities for each of the inference methods consid-
ered. Panels A-C use 2 bins to discretize the outcome variable
and Panels D-F use 10 bins. Rejection probabilities are com-
puted over 500 simulation draws, under a 5% significance level.
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The qualitative pattern across the tests is similar. One notable difference is that we do not
reject the null for the relationship-quality mechanism in Baranov et al. (2020) using ARP,
although this is perhaps unsurprising given the low power of ARP in simulations calibrated
to this mechanism.

Appendix Table 3: p-values for tests for the sharp null using alternative procedures

Application M CS ARP FSSTdd FSSTndd

Bursztyn et al (main sample) Job-search Sign-up 0.020 0.030 0.018 0.018
Bursztyn et al (full sample) Job-search Sign-up 0.019 0.020 0.019 0.019

Baranov et al Grandmother 0.023 0.030 0.011 0.015
Baranov et al Relationship 0.028 0.650 0.037 0.049
Baranov et al Grandmother + Relationship 0.654 0.550 0.115 0.256
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