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Abstract
We evaluate the folk wisdom that algorithmic decision rules trained on data produced by biased
human decision-makers necessarily reflect this bias. We consider a setting where training labels
are only generated if a biased decision-maker takes a particular action, and so “biased” training
data arise due to discriminatory selection into the training data. In our baseline model, the more
biased the decision-maker is against a group, the more the algorithmic decision rule favors that
group. We refer to this phenomenon as bias reversal. We then clarify the conditions that give rise to
bias reversal. Whether a prediction algorithm reverses or inherits bias depends critically on how
the decision-maker affects the training data as well as the label used in training. We illustrate our
main theoretical results in a simulation study applied to the New York City Stop, Question and
Frisk dataset.
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1 Introduction

Algorithms have the promise to improve upon human decision-making in a variety of settings,
but concerns abound that algorithms may produce decision rules that are biased against
particular groups. A particular fear is that if the training data is generated by human
decision-makers that discriminate against a particular group, then the algorithm will reflect
this bias. This concern is captured by the common refrain “bias in, bias out” [4, 28].

In this paper, we evaluate the folk wisdom that algorithms trained on data produced by
biased human decision-makers will necessarily inherit bias. Through the lens of a classic
model of discrimination in economics, we consider the case where “biased” training data arise
due to discriminatory selection into the training data and illustrate that algorithms trained
over such biased training data do not necessarily inherit bias. In fact, for a common class of
prediction exercises, we show that the opposite is true: The more biased the decision-maker
is against a group in the training data, the more favorable the algorithm is toward that group.
We refer to this phenomenon as bias reversal. We clarify the conditions that give rise to bias
reversal and discuss how alternative biases in the training data affect resulting algorithms.
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We consider a baseline model with three elements that together produce bias reversal.
First, we consider a setting in which labels in the training data are created only if a decision-
maker chooses to take a particular action. This is commonly known as the selective labels
problem [24, 19]. For instance, we may only obtain data on whether a pedestrian is carrying
contraband if a police officer chooses to search the pedestrian. Likewise, a college may only
obtain data on a student’s academic performance in college if an admissions officer chooses
to accept the student, a bank may only obtain data on a borrower’s creditworthiness if a
loan officer chooses to grant the borrower a loan, and a firm may only obtain data on a job
applicant’s productivity if that applicant is hired. Second, we follow a classic literature in the
economics of discrimination and assume that the decision-maker is a taste-based discriminator
against the disadvantaged group [5, 1, 23, 2, 3]. This means that the decision-maker acts as if
they receive a different payoff (or face a different cost) for taking the action of interest against
a particular group. This may arise due to preferences, costs, or misperceptions. As a result,
bias in our model manifests itself through selection into the training data. Finally, we assume
that the decision-maker has access to unobservables, which are features that are informative
about the label of interest but are unavailable in the observed training data. Each of these
three elements – selective labels, taste-based discrimination and unobservables – are critical
to bias reversal.

In this baseline model, we then show that the more biased the decision-maker is against
the disadvantaged group, the more favorable the resulting algorithmic decision rule is toward
the disadvantaged group. For example, in settings where police officers are biased in their
decision to search pedestrians for contraband, an algorithmic decision rule trained to predict
whether a pedestrian is carrying contraband using previously conducted searches would
search fewer African American pedestrians than if police officers were unbiased in their search
decisions. Similarly, in settings where managers are biased against African-Americans in
hiring decisions, an algorithmic decision rule trained to predict employee performance using
data on previously hired employees would hire more African American applicants than if the
managers were unbiased in their hiring decisions.

To illustrate the intuition for this result, consider the example of police searches. Suppose
that police assess the probability that an individual is carrying contraband, and search people
with high assessed probabilities. Police base their search decision on a number of factors
that are recorded in the data (the time of stop, location, demographics of the individual),
as well as subjective information that is not recorded in the data (their evaluation of the
individual’s behavior). Because police choose to search individuals with risky behavior that
is unobservable to the data scientist, an algorithm trained to predict whether contraband
was found using a sample of conducted searches will tend to make predictions that are too
high for the general population. However, this selection issue will be mitigated for African
Americans if police officers are racially biased. Indeed, in the extreme case where police
officers are so biased that they search all African Americans, regardless of underlying risk,
then there will be no selection on unobservable behavior for African Americans in the training
data. Thus, the more biased are police officers, the more favorable is the training data for
African Americans, and hence the more the algorithm learns to favor African Americans.

We emphasize that our results do not imply that biased data can never produce biased
algorithms. Rather, our results highlight that whether an algorithm does or does not inherit
bias depends crucially on the form of the bias and the training of the algorithm. To illustrate
this, we consider modifications to our baseline model that can produce effects in line with the
usual “bias in, bias out” intuition. First, bias reversal crucially depends on the fact that the
algorithm is trained to predict the outcome of interest (carrying contraband in the policing
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example) in the sample where the outcome is available. The typical “bias in, bias out” result
can be obtained if either i) the algorithm is instead trained to predict the human decision,
or ii) the outcome of interest is assumed to be zero for those not selected by the human
decision-maker. Second, while we assume that selection into the training data is determined
by a biased decision-making process, we assume that the label of interest is measured without
bias. This rules out “label bias,” an additional source of bias in training data mentioned in
the literature on algorithmic fairness – see [9] for a discussion.1

This paper relates to several recent works that study fairness and discrimination across
computer science and the social sciences. First, several papers consider properties of al-
gorithms that are trained on selectively-labelled data. [19] and [24] define the selective
labels problem and discuss its implications for evaluating the predictive performance of
algorithms. [17] studies how the selective labels problem impacts fairness-adjusted predictors.
[13] illustrates that the selective labels problem cannot be addressed via standard sample
selection procedures and propose new methodology to deal with it. [11] shows that when
there are selective labels, an algorithm can improve upon human decisionmaking if the human
decisions are sufficiently noisy. [27] proposes a causal modeling approach to estimating fair
prediction functions in the presence of unobserved features. [18] studies the related problem
of how a fairness-minded decision-maker (e.g. college admissions officer) should select a
screening rule if the selected data from that screening decision are used downstream by a
Bayesian decision-maker (e.g. employer). Our work is also related to a series of legal papers
that have argued that automating decisions will magnify discrimination due to historical
biases in existing training data – see [4], [7], [28]. In contrast, our results suggest that for
certain prediction exercises, historical biases in training data can produce automated decision
rules that may reverse discrimination. Conversely, our results also imply that if an algorithm
is trained on data that is produced by a decision-maker that exhibits explicit affirmative
action towards a group, the algorithm could, in fact, inherit bias.

Our analysis abstracts away from several potentially important considerations that could
be considered in future work. First, we assume that the outcome Y itself is measured without
bias. This is often a significant concern in many empirical settings of interest. Second, our
main theoretical results focus on properties of the optimal, population prediction function
under squared loss – i.e., the conditional expectation of the outcome given the features – and
abstracts away from finite-sample considerations. Although our simulation evidence indicates
that our results still hold in finite-sample, this deserves further attention. Extending these
results to more general loss functions may also be of interest. Third, our results focus on
an algorithmic decision rule that is trained “naively” by the data-scientist, meaning that
they do not adjust for selection into the data nor impose any additional fairness criteria.
Finally, we focus attention on a taste-based model for discrimination. Other models of
discriminating behavior may yield different conclusions. For example, discrimination may
arise due to stereotypes (e.g. [6]) or differential noise in the decision-maker’s predictions
across groups (e.g. [25]).

The remainder of this paper is structured as follows. Section 2 presents our baseline
model. Section 3 states our main results and Section 4 discusses extensions. Section 5
illustrates our results in simulations based on New York Stop, Question and Frisk data. We
place all proofs in the Appendix.

1 In the policing example, label bias would arise if police officers discriminated against African-Americans
by fabricating evidence against them or ignoring evidence against whites.
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2 A Model of Biased Decisions

In this section, we develop a model wherein the training data given to a predictive algorithm is
generated by a biased human decision-making process. For the sake of exposition, we discuss
the model in the context of police bias in pedestrian searches and refer to the decision-maker
as the police throughout. This will more clearly connect our theoretical results with our
empirical application to New York Stop, Question and Frisk. However, this model is broadly
applicable to other settings with selective labels such as college admissions, loan decisions,
and hiring decisions, among many others. We discuss the connection to these other settings
in Section 4.1.

Police officers wish to search individuals that have a high probability of carrying con-
traband. Following [5] and a large literature in economics, police officers are taste-based
discriminators against African Americans.2 Based on the search decisions of police officers,
data are then revealed to the data scientist. If a police officer searches an individual, the data
scientist observes the result of that search (was the individual carrying contraband?), some
characteristics of the individual and the stop (age, gender, location of stop, time of stop, etc.)
as well the race of the individual. The data scientist then uses this training data to construct
an algorithm to predict which individuals are most likely to be carrying contraband. We
focus on analyzing properties of the predictive algorithm produced by the data scientist.

2.1 The population
Individuals in the population are characterized by the random vector (X,U,R, Y ). Let
X ∈ X denote some characteristics about the individual that are typically recorded after
a police search such as age, gender, location of stop, time of stop, etc. Let U ∈ U denote
characteristics of an individual that are observed by a police officer prior to a search but
are typically not recorded. For example, this may consist of the police officer’s evaluation
of the individual’s behavior prior to the stop or the individual’s behavior during the stop.
Importantly, U is observed by the police officer but is unobserved to the data scientist.
Finally, R ∈ {0, 1} denotes the race of the individual with R = 1 for African Americans,
and Y ∈ {0, 1} denotes whether the individual is carrying contraband. The population is
described by the joint distribution P of the random vector (X,U,R, Y ).

2.2 Police decisions
Police officers observe the characteristics (X,U,R) of each individual and decide whether to
search that individual. Police officers receives a positive payoff b > 0 if they find contraband
after searching an individual and without loss of generality, we normalize this payoff to one,
b = 1. Police officers receive a payoff of zero if the individual is not searched and incur a cost
c > 0 for every search.

In addition, police officers are taste-based discriminators against African Americans and
receive an additional payoff τ > 0 from searching African Americans. The parameter τ
parametrizes the degree to which the police are biased against African Americans. The
larger the magnitude of τ , the more biased the police are against African Americans. In sum,
the police’s payoffs from conducting a search are Y + τR − c. In order to maximize their
expected payoff, the police decide whether to search according to a threshold rule:

S∗(X,U,R) = 1 (E[Y |X,U,R] ≥ c− τ ·R) .

2 Unlike [2] and [23], we do not assume that the individual’s decision to carry contraband responds
to police search decisions. As a result, we do not introduce an equilibrium concept such as Nash
equilibrium.
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The bias of the police implies that a lower threshold for search is applied to African Americans.
In this sense, the police are biased against African Americans. We assume for now that
the police make their decisions based on an optimal prediction of Y given (X,U,R) under
squared loss (i.e., E[Y |X,U,R]), although in Section 4.2 we show that our main results
extend to the case where the police use noisy estimates of the conditional expectation under
certain regularity conditions.

2.3 The prediction problem

The data scientist then observes data consisting of individuals that are stopped by the police.
There are “selective labels” – the data scientist only observes whether an individual was
carrying contraband (Y ) if the police searched the individual (S∗ = 1). The data-scientist
thus observes the pair (Y,X,R, S∗) for those with S∗ = 1. In some of our results, we will
also consider what happens if the data scientist is able to observe (X,R, S∗) but not Y for
those who are not searched by the police. Let P̂τ denote the joint distribution of the data
that is revealed to the data scientist. We index the probability distribution of the observed
data by the police’s discrimination parameter τ as our results focus on comparative statics
over τ .

Using the observed data, the data scientist constructs a predictive algorithm of whether an
individual is carrying contraband Y using the observed features (X,R). In our baseline model,
we suppose that the data scientist trains the algorithm using only the data where the outcome
is available (S∗ = 1). We abstract from the estimation problem and consider properties of the
optimal predictor under squared loss, EP̂τ

[Y |X,R, S∗ = 1] (i.e., the conditional expectation
over the distribution of observed data). For now, we suppose that race is included as a
feature; we discuss relaxing this assumption in Section 4.3.

3 Baseline results

3.1 Bias reversal

We now present our bias reversal result, which examines how an algorithm trained to predict
Y in the searched sample (S∗ = 1) can reverse bias. We first sketch the intuition and then
formally state the result.

Since the police incorporate the unobservable U into their search decision, the training
data of conducted searches will tend to be composed of individuals that have values of U
associated with higher probability of Y = 1. As a result, the predictive algorithm trained
on the selected training data will tend to over-predict the label Y for the whole population.
However, as the police officers become more biased, this selection problem becomes less
severe for African Americans. Intuitively, the more biased are the police officers against
African Americans, the more likely they are to search any given African American, and so
there is less selection on the unobservable U . In the extreme case where τ ≥ c, police officers
search all African Americans, and there is no selection on the unobservable U for African
Americans. The predictive algorithm thus becomes more favorable to African Americans as
the police officers become more biased.

I Theorem 1. EP̂τ
[Y |X = x,R = 1, S∗ = 1] is weakly decreasing in τ for all x ∈ X and τ

such that P̂τ (S∗ = 1 |X = x,R = 1) > 0. Likewise, EP̂τ
[Y |X = x,R = 0, S∗ = 1] is constant

in τ for all x ∈ X and τ such that P̂τ (S∗ = 1 |X = x,R = 0) > 0.

FORC 2020
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Theorem 1 shows that as the police become more biased against African Americans, the
predictions of the algorithm trained on the selected data become more favorable to African
Americans, in the sense that African Americans are predicted to have lower risk of carrying
contraband. This implies the more biased the police are against African Americans, the fewer
African Americans will be searched by an automated search rule that uses these predictions.

I Corollary 2. Consider the automated search rule:

Sautomatedτ (x, r) = 1
(
EP̂τ

[Y |X = x,R = r, S∗ = 1] ≥ cmin
)

for some cmin ∈ [0, 1].3 Then Sautomatedτ (x, 1) ≤ Sautomatedτ ′ (x, 1) for any τ ′ < τ , so any
African-American searched under τ is also searched under τ ′, whereas Sautomatedτ (x, 0) does
not depend on τ . It follows that the fraction of African Americans searched under Sautomatedτ

(i.e., E[Sautomatedτ (X,R) |R = 1]) is decreasing in τ , whereas the fraction of whites searched
under Sautomatedτ is constant in τ .

Corollary 2 states that an automated search rule based on a threshold rule using
EP̂τ

[Y |X = x,R = r, S∗ = 1] searches fewer African-Americans the larger is the bias τ
in the training data.

These results clarify the manner in which the bias of police officers influences the
algorithmic treatment of African Americans under an automated search rule. We do not
take a stance directly on whether the algorithm’s treatment of African Americans for any
given τ is “fair” in a formal sense.4 However, any sensible notion of fairness would suggest
that if a given decision rule is unfair to African Americans, then any decision rule that is
“harsher” to African Americans (i.e. more likely to search any given African American) and
treats whites the same is at least as unfair. Therefore, Theorem 1 and Corollary 2 suggest
that if a decision rule based upon a prediction function trained on data produced by police
officers that discriminate against African Americans (τ > 0) is unfair, then a decision rule
which is based upon a prediction function trained on data produced by police officers that are
unbiased against African Americans (τ = 0) would be even more unfair to African Americans.

We refer to the phenomenon in which the more biased is the human-decisionmaker,
the more favorable is the algorithmic decision rule to the minority group as “bias reversal.”
Although presented in the context of police searches, we show this phenomenon extends to
other settings such as loan applications, hiring decisions, and college admissions in Section 4.1.

3.2 Bias inheritance for alternative prediction exercises
In Theorem 1 and Corollary 2, we assumed that the data scientist constructs an algorithm to
predict the observed label Y using the training data for the searched sample (S∗ = 1). We
now consider what happens if a different label and sample is used. First, the data scientist
may instead predict the human decision S∗ itself over the full population. This is a common
type of prediction problem in some contexts. For example, a series of papers note that using
the human decision as the label is common in training algorithms to automate hiring decisions
[10, 11, 30]. For this prediction exercise, bias reversal no longer holds. Instead, the prediction
function inherits bias – as the police become more biased against African-Americans, the
predictions of the algorithm trained in this way become less favorable to African-Americans.

3 We implicitly assume that P (S∗ = 1 |X = x, R = r) > 0 for almost every (x, r), so that the search rule
is well-defined.

4 Results in [22] highlight that an algorithm cannot simultaneously satisfy several common definitions of
fairness if the base rates of risk differ across groups.
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I Theorem 3. E [S∗|X = x,R = 1] is weakly increasing in τ for all x ∈ X .

A second alternative prediction exercise that the data scientist may consider is to predict
the compound outcome that the individual was searched by the police and that the individual
was carrying contraband - that is, predict the label Y ·S∗ over the full sample. Put otherwise,
the data scientist imputes the missing label Y to be zero if S∗ = 0. This type of prediction
exercise is common in certain medical applications (e.g., see [29]). In this case, we again
find that the prediction function inherits bias from the police officers’ discriminatory search
decisions.

I Theorem 4. E [Y S∗|X = x,R = 1] is weakly increasing in τ for all x ∈ X .

Theorem 3 and Theorem 4 immediately imply that an automated decision rule that
is based upon predictions of S∗ or Y S∗ will inherit bias – that is, search more African
Americans as police officers become more biased.

I Corollary 5. Consider the automated search rule Šautomatedτ (x, r) = 1
(
Ŷ (x, r) ≥ cmin

)
for

some cmin ∈ [0, 1], where Ŷ (x, r) = E [S∗ |X = x,R = r] or Ŷ (x, r) = E [Y S∗ |X = x,R = r].
Then, Šautomatedτ (x, 1) ≤ Šautomatedτ ′ (x, 1) for τ < τ ′, so any African American that is searched
under τ is also searched under τ ′. It follows that the fraction of African Americans searched
under Šautomatedτ (i.e. E

[
Šautomatedτ (X,R) |R = 1

]
) is increasing in τ .

The key distinction between these alternative prediction exercises and our earlier result
is that bias now drives a wedge between the true outcome of interest and the label that the
algorithm is trained on (S∗ or Y ·S∗), but the human bias does not affect sample composition.
By contrast, in the original setting that predicts Y over the selected sample with S∗ = 1, the
bias affects the prediction exercise only through sample composition. This is a crucial yet
subtle difference. Taken together, these results show that the choices of label (Y vs. S∗ vs.
Y · S∗) and training sample (S∗ = 1 vs. full sample) play a key role in determining whether
human biases propagate into algorithmic predictions and automated decisions, formalizing
an argument made heuristically in [21]. Table 1 summarizes our results across the three
prediction exercises considered.

Table 1 Summary of prediction exercises.

Outcome Training sample Comparative static
Y S∗ = 1 Bias reversal
S∗ Full sample Bias inheritance
Y · S∗ Full sample Bias inheritance

4 Extensions

4.1 When discrimination yields fewer labels for the disadvantaged
group

In other settings of interest with selective labels such as loan applications, hiring decisions, and
college admissions, fewer labels are generated when the decision-maker is biased. For example,
if a hiring manager is biased against African Americans, fewer African American applicants
are hired. A simple extension shows that an analogous comparative static still holds: the
more biased the decision-maker is against a group, the more the resulting algorithmic decision
rule favors that group.

FORC 2020
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As an example, consider a hiring manager that predicts the productivity Y of job
applicants using features X that are observable to the data scientist and features U that
are unobservable to the data scientist. A biased hiring manager applies a higher predicted-
productivity threshold for African Americans than for whites. This means the more biased
is the hiring manager, the fewer African-Americans will enter the training data. However,
the African-Americans who do enter the training data will be more positively selected on
U (i.e., on unobservables positively correlated with productivity). Thus, the more biased is
the hiring manager against African-Americans, the higher will be the algorithm’s predicted
productivity for African-Americans and the more African Americans will be hired by an
algorithmic hiring rule.

Formally, consider a modified selection rule S̃(X,U,R) = 1 (E[Y |X,U,R] ≥ c+ τ̃R), with
τ̃ > 0. Define P̂τ̃ to be the joint distribution of the data revealed to the data scientist under
the selection rule S̃(X,U,R). This model is equivalent to the model considered earlier with
τ = −τ̃ . We thus obtain the immediate corollary to Theorem 1.

I Corollary 6. EP̂τ̃
[Y |X = x,R = 1, S̃ = 1] is weakly increasing in τ̃ for all x,τ̃ such that

P̂τ̃ (S̃ = 1|X = x,R = 1) > 0, while EP̂τ̃
[Y |X = x,R = 0, S̃ = 0] is constant in τ̃ , for all x, τ̃

such that P̂τ̃ (S̃ = 1|X = x,R = 0) > 0.
Moreover, consider the automated hiring rule:5

S̃automatedτ̃ (x, r) = 1
(
EP̂τ̃

[Y |X = x,R = r, S̃ = 1] ≥ cmin
)

for cmin ∈ [0, 1]. Then, S̃automatedτ̃ (x, 1) ≤ S̃automatedτ̃ ′ (x, 1) for any τ̃ < τ̃ ′. It follows that
the fraction of African Americans hired under S̃automatedτ̃ (i.e, E[S̃automatedτ̃ (X,R) |R = 1])
is increasing in τ̃ .

In unpacking this result, it is useful to distinguish between statistical bias and “favorability”
of the algorithm. As the decision-maker becomes more biased, the predictions of the algorithm
become more biased in a statistical sense, meaning that the magnitude of E[Y |X,R = 1, S̃ =
1]−E[Y |X,R = 1] becomes larger. However, this statistical bias works in a way that makes
algorithmic decision rules more likely to select members of the discriminated against group.

These results highlight that the phenomenon of bias reversal is not dependent on the
selective labels problem leading to more labels to be collected for the disadvantaged group,
and is thus applicable to a range of settings with selective labels.

4.2 Noisy decision-making

We next show that the results in Section 3 are robust to allowing for random noise in the
officers’ decisions. In the baseline model, we assumed that the police officers are able to
correctly combine the available information to construct accurate predictions about risk,
E[Y |X,R,U ] and thereby rank order individuals correctly. Extensive work in the social
sciences suggest that this does not hold in many applications of interest. For example, [19]
suggest that even experienced judges are unable to accurately predict recidivism in bail
decisions. We now show that the comparative static in Theorem 1 still holds if police officers
have independent random noise in their risk assessments.

5 We implicitly assume that P (S̃ = 1 |X = x, R = r) > 0 for almost every (x, r), so that the hiring rule is
well-defined.
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I Proposition 7. Suppose police search according to

Snoise(X,U,R, ε) = 1
(
E[Y |X,U,R] + ε ≥ c− τ ·R

)
,

for a random prediction error ε, where the distribution ε |X,R has strictly increasing hazard
and ε ⊥⊥ (Y,U) | (X,R). Then, EP̂τ

[Y |X = x,R = 1, Snoise = 1] is weakly decreasing in τ

for all x ∈ X and τ such that P̂τ (Snoise = 1 |X = x,R = r) > 0.

Similarly, the comparative statics derived for the alternative prediction exercises are also
robust to noisy decision-making.

I Proposition 8. The conclusions of Theorem 3 and Theorem 4 hold replacing S∗ with
Snoise.

4.3 Excluding group membership from the predictive algorithm
We now consider what happens if the data scientist is forbidden from using group membership
in the predictive algorithm. For example, it may be illegal for a predictive algorithm to
explicitly use race as a feature [21, 15]. In this case, the prediction function in the baseline
model now takes the form EP̂τ

[Y |X,S∗ = 1].
Whether the comparative static in bias still holds now depends on whether group

membership R is “reconstructable” from the observed features X. That is, it depends on
whether group membership is predictable from the observed features. If group membership
is perfectly reconstructable, then these results trivially hold for a prediction function that
does not use group membership as EP̂τ

[Y |X,S∗ = 1] = EP̂τ
[Y |X,R, S∗ = 1].

If group membership is not perfectly reconstructable, then one can construct examples
in which the gap in average predictions across groups for a group-blind algorithm moves in
the opposite direction as the gap in average predictions across groups for an algorithm that
includes race. The direction of the effect will depend on whether the marginally searched
individual in the R = 1 group is more “similar” to the average person with R = 0 or R = 1.
As a simple example, suppose there is only one observed, binary feature X. Suppose that
among whites, X = 1 with probability 1− ε for some small ε > 0. Among African Americans,
X = 0 with probability 1− ε. Then, if the marginally searched African American has feature
X = 1, then an increase in the bias of police officers will have a larger effect on the average
prediction for whites than African Americans, as there are relatively more whites among
the group with X = 1 in the observed data. Conversely, if the marginally searched African
American has feature X = 0, then it will have a larger effect on the average prediction for
African Americans than whites. The same intuition holds for the alternative prediction
exercises that we considered earlier.

The reconstruction problem has been discussed at length elsewhere – see, among many
others, [20, 26, 8, 12]. Typically, it is thought that if race is reconstructable from other
features, then algorithms will exhibit bias or discriminate against minority groups. Our
results illustrate that this is not true generally. If group membership is reconstructable, then
an algorithm that is blind to group membership may exhibit bias reversal (Theorem 1), in
line with results in [14, 20, 15].

5 Application: New York City Stop, Question and Frisk

We now apply these results to the New York Stop, Question and Frisk (SQF) data. We
synthetically create a training data set that is produced by biased search decisions and
illustrate the key comparative statics described in Section 3.

FORC 2020
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5.1 Data description

SQF was a program in New York City that allowed the police to temporarily stop, question,
and search individuals on the street. We use publicly available, stop-level data that contains
information on all stops conducted as part of the SQF program from 2008-2013, totalling
over 4 million stops of pedestrians and over 350,000 searches [16]. For each recorded stop, we
observe whether the stopped individual was searched for contraband and if so, an indicator
for whether contraband was found. The data also contains several detailed characteristics of
the stopped individual and the circumstances of the stop. The features in the data include
the stopped individual’s age, gender, and build, and the time and location of the stop, which
we treat as the observable features X. Importantly, we also observe the race R of the stopped
individual. We restrict attention to stops of non-Hispanic whites and African Americans.
The data also include the officer’s stated reason for conducting the stop, e.g. “carrying a
suspicious object” or “displayed behavior indicative of a drug transaction.” We treat these
responses as the unobservable features U that are available to the officer at the time of
the search decision but are unavailable to the data scientist. This is analogous to “soft
information” about the individual that may be available to the officer at the time of the stop
but may be unavailable in certain data sets.

5.2 Simulation design

We conduct a simulation exercise that trains an algorithm to predict whether a stopped
individual is carrying contraband on synthetic training datasets that are generated from the
original SQF data. Across synthetic training datasets, we vary the degree of bias against
African Americans in search decisions by selectively “undoing” observed searches. We then
examine how changing the degree of bias against African Americans affects the resulting
algorithm’s predictions.

More concretely, we first subset the data to only include stops in which searches were
conducted (S∗ = 1). We then randomly split the searched SQF stops into two partitions.
In the first partition, we construct a predictor for carrying contraband among stops with
searches. The predictor estimates E[Y |X,R,U, S∗ = 1], where X is a feature vector that
includes demographic information about the stopped individual such as age, gender and
build as well as the location and time of the stop, and U is the officer’s stated reason
for the stop. We construct the predictor using logistic regression, matching the approach
of previous research using this data [16, 17]. In the held-out partition, we then use the
estimated prediction function to construct a synthetic search flag Ŝ. For individuals with
Ŷ = Ê[Y |X,R,U, S∗ = 1] ≤ cR, we set Ŝ = 0 and treat them as if they had not been
searched. For individuals with Ŷ > cR for R ∈ {0, 1}, we set Ŝ = 1. This produces a
synthetic dataset at the search thresholds (c0, c1) in which we observe (Y,X,R, Ŝ) for each
observation. Finally, we re-estimate the prediction function over the synthetically searched
observations. We estimate the functions E[Y |X,R, Ŝ = 1], E[Ŝ|X,Y ] and E[Y Ŝ|X,R] using
logistic regression and examine properties of the estimated prediction functions. We repeat
this simulation for a variety of different thresholds c0, c1 to construct a series of synthetically
searched observations at different levels of bias, defined as τ = c0 − c1, against African
Americans. We vary c0, c1 so that 50 percent of the synthetic dataset is always searched and
only the composition of searches between African Americans and whites vary. We vary the
fraction of searches that are conducted on African Americans from 80 to 95%.
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5.3 Simulation results

Figure 1 plots the results from our simulation exercise. The X-axis plots the discrimination
parameter τ = c0 − c1 across synthetic datasets. Larger values of τ correspond with a search
rule that is more biased against African Americans. The Y-axis plots the fraction of African
Americans that fall in the top 50 percent of predicted risk using the prediction function
estimated over the synthetic dataset. The predictions from our results in Section 3 hold
sharply. First, as the police become more biased against African Americans, the prediction
function Ê[Y |X,R, Ŝ = 1] becomes more favorable to them. In particular, fewer African
Americans fall in the top half of predicted risk as τ increases. This illustrates our result of
bias reversal in a concrete application of interest. Second, as the police become more biased
against African Americans, the prediction functions Ê[Ŝ|X,R] and Ê[Y Ŝ|X,R] become less
favorable to African Americans. As τ increases, more African Americans fall in the top half
of predicted risk. For these prediction functions, “bias in” implies “bias out.”

Figure 1 NYC SQF Simulation Results.

6 Conclusion

In this paper, we evaluated the folk wisdom that algorithmic decision rules trained on data
that are produced by biased human decision-makers will necessarily inherit this bias. We
showed that in an important class of prediction exercises, the opposite holds: The more
biased the decision-maker towards a group, the more favorable is the algorithm towards that
group. We refer to this phenomenon as “bias reversal.” We then showed that an important
determinant of whether one obtains bias reversal or “bias in, bias out” is whether the human
bias affects sample selection or the measured label. When we consider whether algorithms
will inherit human biases, it is therefore important to think carefully about the form of the
human bias, how it affects the training sample, as well as how the labels and features are
selected for the predictive algorithm.
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A Proofs

Proof of Theorem 1
Proof. Define µX,R,U := E[Y |X,R,U ] and µX,R := E[Y |X,R]. Let U∗ = µX,R,U − µX,R, so
that µX,R,U = µX,R +U∗. Note that S∗ = 1 if and only if U∗ ≥ T (X,R, τ) for the threshold
T (X,R, τ) = (c− τ ·R)− µX,R. Applying the law of iterated expectations,

E [Y |X = x,R = r, S∗ = 1] = E [Y |X = x,R = r, U∗ ≥ T (x, r, τ)]
= E [E [Y |X = x,R = r, U ] |X = x,R = r, U∗ ≥ T (x, r, τ)]

= µx,r + E [U∗|X = x,R = r, U∗ ≥ T (x, r, τ)] .

Note that for r = 1, T (x, r, τ) is decreasing in τ . It follows immediately that E[U∗|X =
x,R = r, U∗ ≥ T (x, r, τ)] is weakly decreasing in τ , which gives the first desired result.
Likewise, when r = 0, T (x, r, τ) does not depend on τ , which gives the second result. J

Proof of Theorem 3
Proof. By the law of iterated expectations, E[S∗|X = x,R = 1] = E[E[S∗ |X = x, U,R = 1]].
Then,

E[S∗|X = x,R = 1] =
∫
u∈U

E[S∗|X = x, U = u,R = 1] dF (u)

=
∫
{u∈U :S∗(x,u,1)=1}

dF (u)

=
∫
{u∈U :E[Y |X=x,U=u,R=1]≥c−τ}

dF (u).

It follows that for τ1 < τ2,

E[S∗|X = x,R = 1, τ = τ2]− E[S∗|X = x,R = 1, τ = τ1] =
∫
u∈U12

dF (u),

for U12 = {u ∈ U : c − τ2 ≤ E[Y |X = x, U = u,R = 1] ≤ c − τ1}, which gives the desired
result. J

Proof of Theorem 4
Proof. The proof of this result is analogous to Theorem 3, replacing S∗ with Y S∗. J

FORC 2020

http://arxiv.org/abs/1906.09208


6:14 Bias In, Bias Out? Evaluating the Folk Wisdom

Proof of Proposition 7
The proof of Proposition 7 uses the following lemma.

I Lemma 9. Suppose the police search individuals according to

Snoise(X,U,R, ε) = 1
(
E[Y |X,U,R] + ε ≥ c− τ ·R

)
,

for a random prediction error ε. Suppose that ε ⊥⊥ U |X,R and the distribution of ε |X,R
has an increasing hazard, i.e. f(ε|X,R)

1−F (ε|X,R) is increasing in ε for f(· |X,R) the conditional
density function of ε. Then, µX,R,U |{Snoise = 1, X,R = 1} has the monotone likelihood ratio
property in −τ , where µX,R,U = E[Y |X,U,R] as before.

Proof. The police choose Snoise = 1 if and only if µX,R,U + ε ≥ c− τ ·R, or equivalently, if
and only if ε ≥ c− τ ·R− µX,R,U . Consider µ1 < µ2 in the support of µX,R,U . Then,

P
(
µX,R,U = µ1|Snoise = 1, X,R

)
P (µX,R,U = µ2|Snoise = 1, X,R)

=
P
(
Snoise = 1|µX,R,U = µ1, X,R

)
P (Snoise = 1|µX,R,U = µ2, X,R) ×

P (µX,R,U = µ1|X,R) /P
(
Snoise = 1|X,R

)
P (µX,R,U = µ2|X,R) /P (Snoise = 1|X,R)

= P (ε ≥ c− τ ·R− µ1|X,R) · P (µX,R,U = µ1|X,R)
P (ε ≥ c− τ ·R− µ2|X,R) · P (µX,R,U = µ2|X,R)

=
(
1− Fε|X,R [c− τ ·R− µ1]

)
· P (µX,R,U = µ1|X,R)(

1− Fε|X,R [c− τ ·R− µ2]
)
· P (µX,R,U = µ2|X,R)

where the first equality follows from Bayes’ Rule, the second equality uses the definition of
Snoise and the conditional independence of ε and U , and the third applies the definition of
the CDF. Now, differentiating with respect to −τ :

∂

∂(−τ)

(
P
(
µX,R,U = µ1|Snoise = 1, X,R

)
P (µX,R,U = µ2|Snoise = 1, X,R)

)
=

R ·

(
fε|X,R [c− τ ·R− µ1]

(
1− Fε|X,R [c− τ ·R− µ2]

)(
1− Fε|X,R [c− τ ·R− µ2]

)2 −

fε|X,R [c− τ ·R− µ2]
(
1− Fε|X,R [c− τ ·R− µ1]

)(
1− Fε|X,R [c− τ ·R− µ2]

)2

)
× P (µX,R,U = µ1|X,R)

P (µX,R,U = µ2|X,R) ,

Clearly, this derivative is zero if R = 0. If R = 1, the derivative is greater than or equal to
zero if and only if

fε|X,R [c− τ ·R− µ1]
(
1− Fε|X,R [c− τ ·R− µ2]

)
− fε|X,R [c− τ ·R− µ2]

(
1− Fε|X,R [c− τ ·R− µ1]

)
≥ 0

or equivalently,

fε|X,R [c− τ ·R− µ1]
1− Fε|X,R [c− τ ·R− µ1] ≥

fε|X,R [c− τ ·R− µ2]
1− Fε|X,R [c− τ ·R− µ2] . (1)

However, since µ1 < µ2, we have c− τ ·R− µ1 > c− τ ·R− µ2, and so (1) holds if ε|X,R
has increasing hazard. J
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Proof of Proposition 7. Returning to Proposition 7, we follow an argument that is analogous
to the proof of Theorem 1. As before, define µX,R,U := E[Y |X,R,U ]. Note that Snoise = 1
if and only if µX,R,U + ε ≥ c− τ ·R. Applying the law of iterated expectations,

E
[
Y |X = x,R = r, Snoise = 1

] (1)= E
[
E [Y |X,R,U, ε] |X = x,R = r, Snoise = 1

]
(2)= E

[
µX,R,U |X = x,R = r, Snoise = 1

]
,

where (1) uses the law of iterated expectations and that Snoise is simply a function of
X,U,R, ε and (2) uses ε ⊥⊥ Y |X,U,R. The result then follows from Lemma 9. J

Proof of Proposition 8
Proof. Analogous to the proofs of Theorem 3 and Theorem 4, replacing expectations over U
with expectations over the joint distribution of (U, ε). J
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