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ABSTRACT
This paper extends Becker [3]’s outcome test of discrimination to

settings where a (human or algorithmic) decision-maker produces a

ranked list of candidates. Ranked lists are particularly relevant in the

context of online platforms that produce search results or feeds, and

also arise when human decisionmakers express ordinal preferences

over a list of candidates. We show that non-discrimination implies

a system of moment inequalities, which intuitively impose that

one cannot permute the position of a lower-ranked candidate from

one group with a higher-ranked candidate from a second group

and systematically improve the objective. Moreover, we show that

that these moment inequalities are the only testable implications of

non-discrimination when the auditor observes only outcomes and

group membership by rank. We show how to statistically test the

implied inequalities, and validate our approach in an application

using data from LinkedIn.
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1 INTRODUCTION
Researchers are often interested in testing whether a human or al-

gorithmic decision-maker is biased against members of a protected

group (e.g. race or gender). Substantial attention has been paid to

the case where the decision is binary – e.g., whether or not to grant

a loan, accept a student to college, hire a job candidate, etc. How-

ever, in a variety of relevant domains, the decision-maker produces

a ranked list of candidates. Ranked lists are particularly relevant

in the context of online platforms: LinkedIn provides recruiters

with an ordered list of candidates, Google returns an ordered list

of search results, and Facebook and Twitter provide users with an

ordered feed of posts. Ranked lists are relevant in other domains, as

well: for example, hospitals participating in the National Residency

1
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Match Program (NRMP) provide a listwise ranking of candidate

residents [19], and experiments in behavioral economics have asked

participants to rank which of the other participants they would like

to be grouped with [6].

We consider the setting where an Auditor observes ranked lists

of candidates produced by a Ranker. The Auditor observes each

candidate’s group statusG and outcomeY . Importantly, the Auditor

does not observe all of the features X that are available to the

decision-maker. This reflects a realistic limitation to (human or

algorithmic) audits in a variety of domains. When the decision-

maker is human, it is nearly always the case that there are factors

that are observed by the decision-maker but not by the auditor –

for example, an auditor of the NRMP would not be able to observe

everything that occurred during the candidate’s interview. Likewise,

external auditors of tech platforms will almost never have access

to all of the features used by the algorithm. Even internally within

tech platforms it is often difficult to retrospectively reconstruct all

of the features used by an algorithm, since all of the relevant user

data may not be saved for privacy reasons. Moreover, even if all

the data were observed, the covariates may be so high-dimensional

that it is difficult to condition on the full set of covariates in any

practical analysis.

We then ask how the Auditor can test whether the Ranker is

biased against a protected group in forming their rankings. Our

notion of bias extends Becker [3]’s notion of taste-based discrimi-

nation to the context of listwise rankings. In particular, we will say

that the Ranker is unbiased if they sort candidates to maximize an

objective function that values placing candidates with better out-

comes earlier in the list. This notion of unbiasedness is referred to

as “accurate statistical discrimination” in the economics literature.

In the computer science literature, a Ranker would be said to be

unbiased if they order the candidates based on the predictions of

a Bayes-optimal score. As we show, this form of objective nests

optimizing the Net Discounted Cumulative Gain (NDCG) objective

commonly used for search algorithms. It can also be motivated by

a simple model in which the objective is to maximize total engage-

ment, and engagement with a post is an increasing function of its

quality and rank in the list.

Our first main theoretical result is that the null hypothesis of

no bias implies a system of conditional moment inequalities. Intu-

itively, these moments impose that whenever we see a particular

configuration of the candidates (e.g. a woman first, man second,

etc.), we should not be able to flip the order of some of the candidates

and improve the objective function on average. For instance, we

should not be able to increase the objective on average by flipping

the position of the first two candidates whenever the first-ranked

candidate is male and the second is female.

Our second main theoretical result is that this system of moment

inequalities is a sharp testable implication of the hypothesis of no

bias. Specifically, whenever the moment inequalities are satisfied,
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there exists a distribution for the unobserved covariates such that

the observed data corresponds with the utility maximization of an

unbiased decision maker.

Our theoretical results allow us to leverage a large econometrics

literature on testing moment inequalities to develop statistical tests

of bias in settings with list-wise rankings (see Canay and Shaikh

[5], Molinari [15] for reviews of the moment inequality literature).

We discuss several practical considerations, including: reducing the

dimension of the large number of implied inequalities; adjusting

for position effects – wherein a candidate’s realized position has a

causal effect on their outcome; and incorporating observed features

about the candidates.

Finally, we showcase our proposed procedure in a validation

exercise using data from the InstaJobs algorithm at LinkedIn. The

InstaJobs algorithm is an algorithm for determining whether to

send users a notification about a job they may be interested in. The

algorithm generates a predicted score for each candidate, and sends

notifications to candidates above a threshold. We use the scores

constructed by the algorithm for each job to create a listwise rank-

ing of the candidates, and apply our proposed tests to this ranking

data. This construction allows us to validate the listwise outcome

test by comparing its results to what we would obtain by directly

examining the score used to generate the ranking (which is not typ-

ically available for a ranking algorithm in practice). We find using

the listwise outcome test that when a female and male candidate are

in adjacent ranks, the lower-ranked male candidate systematically

has better outcomes than the higher-ranked female candidates. This

finding accords with a direct examination of the scores used for

rankings, which show that the algorithm is under-calibrated for

men relative to women. To be clear, these results suggest that the

algorithm is not sorting candidates based on the average outcome

(a weighted average of job applications and recruiter responses)

considered in this paper — however, this is potentially consistent

with the algorithm maximizing other objectives or satisfying other

notions of fairness (e.g. accounting for the fact that recruiters them-

selves may be less likely to respond to woman than men with the

same “objective” qualifications).

Our results relate to a large literature on detecting discrimina-

tion in economics, computer science, and other fields. See Lang

and Spitzer [14] for a recent review of the economics literature

on discrimination, which has primarily focused on the case where

the decision-maker makes individual-level decisions (e.g. give out

a loan, hire a candidate) rather than produces listwise rankings.
2

Several notions of fairness for listwise ranking algorithms have

been considered previously in the computer science literature, as

reviewed in Pitoura et al. [16]. Multiple papers have considered de-

mographic parity constraints, which require that exposure (i.e. the

distribution of rankings) be similar across groups [7, 9, 10, 21, 22].

Other work has considered the notions of disparate treatment and

disparate impact, which restrict that exposure be proportional to av-

erage group-level utility or outcomes [21]. Beutel et al. [4] propose

a notion of fairness that extends the notion of equal opportunity

[11] to the listwise ranking setting: this requires that the proba-

bility that a candidate is ranked below another candidate with a

2
One exception to this is Castillo and Petrie [6], who conduct a lab experiment in

which participants rank whom they would like to be grouped with. Castillo and Petrie

[6] focus on differences in average ranks across groups.

worse outcome does not differ across groups. The notion of fair-

ness we consider here is distinct, and is based on the question of

whether the ranking is consistent with maximizing an objective

function that does not depend on group status directly. That is, is

the Ranker ranking candidates using a Bayes optimal score given

the Ranker’s information set? As discussed in Corbett-Davies and

Goel [8] and Rambachan et al. [17] in the context of binary classifi-

cation problems, decision rules that maximize an unbiased utility

function may violate demographic parity or equalized odds if the

distribution of risks differs across populations, a problem known as

inframarginality. Similar distinctions arise in the context of listwise

rankings.

2 MODEL
The model we consider consists of a Ranker and an Auditor. The

Ranker – which could be either an algorithm or human – observes

an unordered list of candidates and their characteristics, and pro-

duces a ranked list of the candidates. The Auditor then observes

the ranked list of candidates and their outcomes, and wants to test

whether the Ranker is biased.

2.1 Set-up
Data-generating Process. The Ranker is presented with queries

indexed byq in which they are asked to rank J candidates with char-
acteristics X1q , ...,X Jq and group status G1q , ...,G Jq . We denote

by Iq = {(X jq ,G jq }
J
j=1 the information provided to the Ranker for

query q. After observing Iq , the Ranker produces a ranked list of

the candidates – formally this is a map jq : {1, ..., J } → {1, ..., J }
where jq (r ) corresponds with the index of the candidate in rank

r . Rank 1 is the best rank, and we suppose that there are no ties

in the rankings, so that jq is one-to-one. After the candidates are

ranked, they realize outcomes Y1q , ...,YJq . We suppose for now

that the outcomes Yjq do not depend on the rankings — in Section

4.1 below, we show that the framework can accommodate certain

forms of “position effects”, wherein the observed outcome is af-

fected by the ranking itself; in this case, Yjq corresponds with the

“position-adjusted” outcome for unit j in query q.

Auditor. There is an Auditor tasked with evaluating whether

the Ranker is biased. For each query q, the Auditor sees the rank-
ordered list of outcomes Yq = (Yjq (1)q , ...,Yjq (J )q ) as well as the

group statuses by rank,Gq = (G jq (1)q , ...,G jq (J )q ). Importantly, the

Auditor does not see the characteristics Xq = (X jq (1)q , ...,X jq (J )q )

used to form the rankings. We show that similar results arise if the

Auditor observes a subset of the variables in Xq in Section 4.1.

2.2 Tests of Unbiasedness
We now describe the notion of unbiasedness that we will test, which

extends the logic of Becker [3] to the setting of list-wise rankings.

Specifically, we will be interested in testing the hypothesis that the

Ranker chooses the ranking jq (·) to maximize

E

[∑
r
wrYjq (r )q | Iq

]
, (1)

where thewr are a strictly decreasing sequence of positive weights.
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Definition 1. We say that the Ranker is unbiased if they choose

jq (·) to maximize (1) for a decreasing sequence of positive weights

wr .

Intuitively, the fact that the wr are decreasing means that the

Ranker prefers to place candidates with higher values of Y earlier

in the list. This corresponds with expected utility maximization if

the Ranker’s utility function is U (Yq ,Gq ) =
∑
r wrYjq (r )q , which

depends only on the rank-ordered outcomes for the candidates, and

not directly on their group-status Gq . That is, an unbiased ranker

performs what is called “accurate statistical discrimination” in the

economics literature. We note that the researcher need not specify

thewr ; our test will be valid for the null hypothesis that the Ranker

maximizes (1) for any decreasing sequence ofwr .

It is straightforward to show that an unbiased Ranker chooses

the order jq (·) that corresponds with sorting the candidates based

on their expected outcomes given the Ranker’s information set

(E[Yjq |Iq ]). That is, an unbiased Ranker forms the Bayes optimal
score E[Yjq |Iq ], and then orders the candidates based on their score.

This is sometimes referred to as the Probability Ranking Principle

[18, 21].

Example 1 (NDCG). A common objective function used for rank-

ing algorithms is Net Discounted Cumulative Gain, abbreviated

NDCG [12]. Intuitively, NDCG is a weighted average of outcomes

by position, normalized by the score that would be obtained if all

candidates were sorted perfectly. Formally, NDCG is defined as the

ratio DCG/IDCG, where

DCG =
∑
r

Y ∗
jq (r )

/loд2(r + 1),

Y ∗
j is a relevance score, and IDCG is the idealized value of DCG

that would be realized if the candidates had been sorted perfectly

in decreasing order of Y ∗
,

IDCG =
∑
r

Y ∗
j∗(r )/loд2(r + 1),

where j∗(r ) is the index with the r th largest value of Y ∗
j . It is then

apparent that maximizing expected NDCG is equivalent to max-

imizing an objective of the form (1), with Yj = Y ∗
j /IDCG, and

wr = loд2(r + 1)
−1
.

▲

Example 2 (Maximizing total engagement). It is well-known that

users tend to engage more with posts earlier in a list than later

in the list. Suppose that placing a post one position later in the

list causally reduces the amount of user engagement by the factor

1 + γ . (The parameter γ could be estimated in an experiment that

randomizes the order of the candidates.) Then forwr = 1/(1 + γ )r ,
we have that the total number of clicks generated by a given ranking

is

∑
r wrYjq (r )q , where Yjq is the number of clicks that candidate j

would have received if placed in the first position in the query (and

thus is not affected by rank).
3
Thus, the objective function above

corresponds with maximizing total engagement after accounting

for the causal effect of position on engagement. ▲

3
If in practice candidate j receives engagement Y ∗

jq and is placed in position a, we
can construct Yjq = (1 + γ )aY ∗

jq as the “position adjusted outcome.”

2.2.1 Possible violations of the null. We now discuss several pos-

sible deviations from the null hypothesis of unbiasedness. One

important type of violation of this hypothesis is when the Ranker

maximizes expected utility for the utility function

U (Yq ,Gq ) =
∑
r
wr (Yjq (r )q − τG jq (r )), (2)

so that the outcome is effectively penalized by τ for candidates from

group G = 1 relative to group G = 0. When the decision-maker is

human, such a utility function may arise owing to racial animus

against the G = 1 group, which Becker [3] referred to as taste-

based discrimination. With an algorithm, such bias might arise if

the algorithm’s score is “boosted” to try to increase exposure for

particular groups of candidates.

Another important possible type of violation of the null is if an

algorithm (or human perception) is trained on selected training

data. In this case, the algorithm may be approximately maximizing

Ẽ
[∑

r wrYjq (r )q | Iq

]
, where Ẽ [·] denotes the expectation in the

training sample. If the training sample is very different from the

target population, then the algorithm that sorts based on the Bayes

score using Ẽ [·] will generally not equal the optimizer of (1), so

that the null will be violated.

A third important case where the null will be violated is if there

is omitted payoffs bias [13]. That is, the Ranker may optimize an

objective like (1) for some Y ∗ , Y . For example, in the context of

hiring, Y ∗
may be actual productivity on the job, whereas Y may

be some proxy such as the score on a performance review. It is thus

important to realize that our null hypothesis is that the Ranker

maximizes the expected utility based on the chosen outcome Y . A
violation of the null could correspond with biased predictions on

the part of the Ranker, or with accurate maximization of a different

objective. This is particularly important for interpretation of our

test in settings where racial or gender bias may affect the measured

label Y ; if the Ranker is instead maximizing an alternative outcome

Y ∗
(e.g. a “debiased” outcome), then this would lead to a violation

of the null. For example, if Y corresponds with whether a recruiter

on a job-search platform clicks on a particular candidate’s profile,

then the null of our test is that the algorithm sorts candidates

by their probability of being clicked. If, in fact, recruiters have

animus against candidates from particular demographic groups

— that is, they are less likely to click on candidates from certain

groups conditional on “objective” features on their resume — then

our notion of unbiasedness may not correspond with the Ranker

sorting candidates based only on their objective qualifications for

the job. The choice of Y is thus an important element of the test.

Finally, we note that the alternative hypothesis of our tests en-

compasses many other possible deviations as well. For example,

the null that the Ranker maximizes (1) could also be violated if the

Ranker sorts by some estimated score that is noisier from some

groups than it is for others. In our view, one advantage of our test is

that the alternative hypothesis encompasses many interesting vio-

lations of “accurate statistical discrimination.” In many cases where

the null is violated, it may be interesting to understand which type

of violation of the null occurred, which we think is an interesting

topic for future research.
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3 THEORETICAL RESULTS
We now provide two main theoretical results. First, we show that

unbiasedness by the Ranker implies a system of conditional moment

inequalities. Second, we show that these moment inequalities are a

sharp implication of unbiased behavior.

Proposition 3.1. If the Ranker is unbiased, then for all a < b,

E[Yjq (a)q − Yjq (b)q |Gq = д] ≥ 0 (3)

for all д such that P(Gq = д) > 0.

Proof. Consider the counterfactual assignment rule that per-

mutes jq (a) and jq (b)wheneverGq = д, and otherwise corresponds
with the observed choice rule. Denote the rankings of this rule by

j̃q (·). Note that if jq (·) maximizes E
[∑

r wrYjq (r )q | Iq

]
for all Iq ,

then by iterated expectations it must maximize E
[∑

r wrYjq (r )q

]
.

Then, the difference in objective value from using the observed

choice rule versus the permuted choice rule is given by

E
[∑

r wrYjq (r )q

]
− E

[∑
r wrYj̃q (r )q

]
= P(Gq = д)(wa −wb )E[Yjq (a)q − Yjq (b)q |Gq = д].

If the observed choice rule is optimal, then the expression in the

previous display must be non-negative. However, P(Gq = д)(wa −

wb ) > 0 by assumption, from which the result follows. □

It is straightforward to show that the change in the objective from

permuting the candidates in positions a and b is proportional to

Yjq (a)q − Yjq (b)q . Proposition 3.1 thus intuitively states that if the

Ranker is unbiased, then we shouldn’t be able to permute the posi-

tion of the candidates in positions a and b whenever we seeGq = д
and improve the objective. In other words, higher ranked candi-

dates should always have higher values of Y on average, regardless

of the group orientation of the query.

Example 3. Suppose that J = 2 and in every query there is one

man and one woman, so that G = (1, 0) or G = (0, 1). Then (3) is

equivalent to

E[Yjq (1)q − Yjq (2)q |G1 = 1,G2 = 0] ≥ 0

E[Yjq (1)q − Yjq (2)q |G1 = 0,G2 = 1] ≥ 0

The first inequality says that the outcome for the higher-ranked

candidate should be larger on average when the higher-ranked

candidate is male (and hence the lower-ranked candidate is female),

whereas the second inequality is analogous for the case where the

higher-ranked candidate is female. ▲

Remark 1 (Sufficiency of adjacent ranks). Proposition 3 is stated

in terms of comparisons of all ranks (a,b) with a < b. It suffices

to consider adjacent ranks, i.e. pairs of the form (a,b) = (k,k + 1).
This is because if the inequality in (3) holds for (a,b) = (k,k + 1)
and (a,b) = (k + 1,k + 2), then adding the two inequalities implies

that it also holds for (a,b) = (k,k + 2), and so on.

Our next result formalizes the notion that the inequalities in

Proposition 3.1 are the only testable implication of unbiasedness by

the Ranker. It states that if the observed data satisfies the moment

inequalities in Proposition 3.1, then there exists a latent distri-

bution for the covariates Xq such that the observed distribution

corresponds with unbiased behavior by the decision-maker.

Proposition 3.2. Suppose the inequalities in Proposition 3.1 are
satisfied. Then there exists a distribution for Iq such that the ob-
served distribution (Yq ,Gq ) corresponds with the decision rule that

maximizes E
[∑

r wrYjq (r )q | Iq

]
.

Proof. We construct a distribution forIq that satisfies the propo-

sition. Intuitively, we construct Iq such that whenever the deci-

sionmaker chooses Gq = д, their expectation for the candidate in

position r is precisely E[Yjq (r )q |Gq = д], and thus the observed

ranking is optimal since this expectation is monotonically decreas-

ing in the rank. Formally, let IG
q = {G jq }

J
j=1 and IX

q = {X jq }
J
j=1.

Construct IG
q to have the distribution corresponding with {Gq },

where {Gq } denotes the unordered list of elements in Gq . Let

IX
q have support that is one-to-one with the support of Gq . In

a slight abuse of notation, we will write IX
q = д to denote that

IX
q takes the value in its support mapping to д. We construct IX

q
such that P(IX

q = д | IG
q = {д}) = P(Gq = д | {Gq } = {д}).

Next, we construct Yq | IX
q = д to have the same distribution

as Yq |Gд = д. Equation (3) then implies that if r1 < r2, then

E[Yjq (r1)q − Yjq (r2)q | IX
q = д] ≥ 0, and thus jq maximizes the ob-

jective. Moreover, by construction of the conditional probabilities,

the implied distribution of (Yq ,Gq ) matches that in the data. □

Remark 2 (Relationship to marginal outcome tests). Unbiased

behavior by the ranker implies that E[Yjq (a) |Iq ] should be equal to
E[Yjq (a+1) |Iq ] if the Ranker is indifferent between the candidates

in positions a and a + 1 (marginal candidates). However, since it

is not observed which candidates are marginal, the only testable

implications involve comparisons between adjacent ranks, even

when these are inframarginal, meaning that the ranker strictly

prefers the candidate in rank a to the one in a + 1. As a result, the
inequality in (3) may be strict if the Ranker is unbiased – that is,

candidates ranked in position a may be strictly better on average

than candidates ranked in position a + 1. By continuity arguments,

it follows that if the Ranker has a small amount of bias (e.g. τ > 0 is

very small in (2)), then the inequalities in equation (3) might still be

satisfied, so that discriminatory behavior is not detectable. In this

case, the Ranker would not be maximizing (1), but the testable im-

plications of unbiasedness given in Proposition 3.1 would still hold

— i.e. the test would have no power to detect the violation of the null

of unbiasedness. However, this inframarginality problem should be

less severe when many candidates are observed, since the expected

difference between the a and (a + 1)-th best candidates should be

small. For example, if E[Yjq |Iq ] is i .i .d . uniformly distributed across

j, then for an unbiased ranker E[Yjq (a)q − Yjq (a+1)q |Iq ] is OP (1/J )

uniformly in a.4

4 TESTING
We now discuss how one can test the hypothesis that a Ranker

is unbiased given a sample of queries q = 1, ...,Q . For simplicity,

we will focus on the case where the queries q are i.i.d., although

the approach we describe will extend easily to clustered or weakly

dependent data.

4
This follows from the fact that the difference in consecutive order statistics of the

uniform distribution is distributed Beta(1, N ).
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Pointwise tests. We first note that for fixed values of a,b and д,
the hypothesis that equation (3) holds is simply the hypothesis that

the population mean of Yjq (a)q − Yjq (b)q is larger than zero among

the population of queries with Gq = д. This individual hypothesis
can be tested with a standard one-sided t-test for the mean of the

population with Gq = д. Such tests will be asymptotically valid

under standard regularity conditions that allow for an application

of a central limit theorem. These individual tests for fixed values of

(a,b,д) are useful in that they can help identify where (if anywhere)
the Ranker appears to be making biased decisions, which may be

useful in addressing any detected bias.

Joint tests. Although the individual tests described above will be

valid for each individual hypothesis for a fixed (a,b,д) combination,

it is well known that there is a problem of multiple hypothesis

testing if such tests are conducted for each possible value of (a,b,д).
Fortunately, a large literature in econometrics has developed joint

tests for a system of moment inequalities such as (1) for all relevant

(a,b,д); see, for instance, Canay and Shaikh [5], Molinari [15] for

recent reviews.

4.1 Implementation and Extensions
Choice of Moments. One important practical point for implemen-

tation is that the dimensionality of the vectorGq can be quite large

in practice: for example, if д takes on two values and there are 30

candidates in the query, then there are 2
30 ≈ 10

9
possible values

of Gq . To reduce the dimensionality in our implementation below,

when comparing the outcomes of rank a to rank b, we condition
on the group membership of the candidates in ranks a and b (i.e.

Gq,a ,Gq,b ), but not on the group status of the other candidates in

the list, which substantially reduces the dimensionality. Although

in theory this may reduce the power of the test, we suspect that

most of the pertinent information about the outcomes for ranks a
and b is captured by their own group status, and not by the group

status of other candidates in the query. In our implementation we

also only test moments comparing adjacent ranks, which as dis-

cussed in Remark 1, is equivalent to the null hypothesis across all

ranks.

Position effects. Our analysis so far has assumed that the outcome

for candidate j does not depend on their rank in the query. In

practice, however, there may be causal effects of position on the

outcome, e.g. the same candidate may get more clicks if ranked

higher in a search on LinkedIn. If the Auditor knows the causal

effect of position – e.g., from an experiment that randomizes search

order – the inequalities can be adjusted to account for this. In

particular, suppose the Auditor knows that putting a candidate

in position a increases outcomes by a factor of (1 + γ ) relative
to ranking the same candidate in position b. Then the change in

the objective from swapping the candidate in positions a and b
would be proportional to (1 + γ )Yjq (b)q −Yjq (a)q , i.e. a comparison

of the outcomes that each candidate would have reached if they

had been placed in position b. Optimizing behavior by the Ranker

implies that this swap can’t improve the objective, and thus yields

the inequality

E[Yjq (a)q − (1 + γ )Yjq (b)q |Gq = д] ≥ 0 (4)

instead of (3). Note that this is equivalent to testing (3) where the

outcome used is the “position-adjusted” outcome rather than the

observed outcome, as in Example 2.
5
We note that if the relevance

score Y is positive and γ ≥ 0 (so earlier positions are better), then

equation (4) implies (3). Thus, tests of (3), which ignore position

effects, will still be valid for the null of unbiasedness, but they may

have lower power to detect violations of the null if position effects

are important.

Partially observed features. Our analysis so far has assumed that

the featuresX are completely unobserved by the auditor. In practice,

a subset of the features used by the decisions-maker may be ob-

served: that is, Xq = (XO
q ,X

U
q ), where XO

q are features observed by

the auditor and XU
q are unobserved features. In this case, the same

arguments above can be applied within each group of candidates

with the same observable features – i.e, conditional on XO
q . Thus,

the sharp testable implication of unbiased rankings in this case is

that

E[Yjq (a)q − Yjq (b)q |Gq = д,X
O
q = x] ≥ 0

for almost-every (д,x). Such inequalities can be tested using meth-

ods for conditional moment inequalities [1].

Mitigation. Our focus is on detecting bias in rankings, and we

primarily leave the problem of mitigating bias to future work. How-

ever, we note that examining which moments appear to be violated

(i.e., which permutations of ranks could improve the objective), may

help algorithm designers to identify what features of the algorithm

deserve additional scrutiny.

5 VALIDATION USING LINKEDIN DATA
We now provide a validation exercise using data from LinkedIn’s

InstaJobs algorithm.
6

5.1 InstaJobs
Background. InstaJobs is an algorithm that sends LinkedIn mem-

bers (candidates) a notification about a job posting that they may

be interested in.
7
The algorithm uses features about the job posting

and the candidates to predict the probability the candidate will

apply for the job as well as the probability the application will re-

ceive attention from the recruiter. Specifically, the algorithm scores

candidates based on the predicted value for the outcome

Y ∗
jq = α ∗ 1[job applied]jq + 1[job applied

& application received recruiter attention]jq
(5)

where α ∈ (0, 1) is a (proprietary) scalar parameter that determines

the relative weight placed on applications versus recruiter attention.

5
For simplicity, our discussion above assumes that there are constant proportional

position effects, so that every candidate’s outcome in position a is (1+γ ) times higher

than their outcome if they’d been placed in positionb . This constant effects assumption

can be relaxed. The key restriction is that −E[Yjq (a)q − (1 + γ )Yjq (b)q |Gq = д]
corresponds with the change in objective from flipping candidates a and b when

Gq = д. A sufficient condition is that percentage change in the average outcome

from moving a candidate from position b to a does not depend on Gq or jq ; we can
thus accommodate heterogeneous proportional position effects so long as they are not

systematically correlated with jq or Gq .
6
In part based on the results in this paper, the version of this algorithm studied in this

paper has subsequently been deprecated.

7
Here “candidates” refers to LinkedIn members who are candidates for receiving a

notification regarding a job posting.
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All candidates with a score above a certain threshold are sent a

notification.

Creating Listwise Rankings. Importantly, InstaJobs is not a list-

wise ranking algorithm, but rather a pointwise classification algo-

rithm that creates a score and makes a binary decision based on

this score. However, we can generate data as if InstaJobs were a

list-wise ranking algorithm by rank-ordering the candidates for

each job by the score the InstaJob algorithm assigned them. An

advantage of this approach is that, since we have access to the

true scores underlying the InstaJobs algorithm, we can validate the

listwise approach by investigating whether it produces similar an-

swers to a direct investigation of the scores generating the rankings.

Also, since InstaJobs is not actually a ranking algorithm, its results

should not be affected by position bias.

Practical Implementation. We have data on the InstaJobs algo-

rithm scores for approximately 193,000 jobs. We create a ranked list

of the top 11 candidates for each job based on the InstaJobs score.
8

(We use the top 11 candidates so that we can make 10 comparisons

between adjacent ranks.) We then implement the listwise outcome

test, using gender as the group variable and NDCG as the objective

(see Example 1). We construct tests for each individual comparison

using one-sided t-tests, and joint tests based on moment inequality

tests with least-favorable critical values that assume all moments

have mean-zero (e.g. Andrews and Soares [2]).
9
For comparison,

we also can look directly at whether the score is calibrated to check

whether marginally-notified candidates have the same outcomes

regardless of their gender, where the outcome is the algorithm’s

objective function given in equation (5).

Results. Figure 1 shows estimates of the moments comparing

adjacent ranks. The left panel compares the average value of Y for

women in one rank relative to men in the adjacent rank below,

with the x-axis denoting the rank of the woman. We see that the

point estimate is negative for all ranks, indicating that the lower-

ranked men actually have better outcomes than the women ranked

immediately above them, which means that we could improve the

objective function (NDCG) by swapping their ranks. Moreover, the

differences are individually statistically significant for 8 of the 10

ranks, and we can jointly reject the hypothesis that all of differences

are non-negative (p < 0.01; see Table 1 for exact p-values). The
right panel of Figure 1 makes similar comparisons, except between

higher-ranked men and lower-ranked women, and finds only posi-

tive differences, indicating that higher-ranked men do indeed have

higher values of Y than women ranked below them. The listwise

outcome test thus suggests that the algorithm is systematically

ranking men below women despite having better outcomes. Since

our data allows us to look at the scores generating the ranks, we

can validate the listwise outcome test by looking at the outcomes

by score directly: the binned scatter plot in Figure 2 shows that men

with a given score do indeed have systematically higher outcomes

8
We restrict only to candidates who receive a notification, since outcomes are only

available for these candidates. Thus, some queries will have fewer candidates if fewer

than 11 people were notified for a given job.

9
Formally, we create unconditional moments of the form

E
[(
Yjq (a)q − Yjq (a+1)q

)
1[Gq,a = д1, Gq,a+1 = д2]

]
≥ 0, where Y is the

relevance score Y ∗
normalized by the IDCG, as in Example 1.

than women with the same score, confirming the conclusion of the

listwise outcome test.
10

Figure 1: Moments ComparingMen andWomen in Adjacent
Ranks
Note: This figure shows comparisons of the average outcome
Y between candidates in a given rank relative to the candi-
date in the next rank. The left panel shows these differences
for querieswhere the higher-ranked candidate is female and
the lower-ranked candidate is male. The right panel shows
analogous comparisons when the higher-ranked candidate
ismale and the lower-ranked candidate is female. The x-axis
denotes the rank of the higher-ranked candidate in the com-
parisons (where 1 is the highest rank).

6 CONCLUSION
This paper considers how to test for bias when the decision-maker

(which could be a human or algorithm) produces a listwise ranking.

Our notion of unbiasedness corresponds with “accurate statistical

discrimination”, i.e. ranking by a Bayes optimal score. We show

that a sharp testable implication of unbiased behavior is a system

of moment inequalities, and discuss how these can be tested in

practice.We validate themethodology using the InstaJobs algorithm

10
This is true even if we impose a linear control for variation of scores within each

score decile.

Figure 2: Pointwise Comparison of Outcome by Score
Note: this figure shows a binned scatterplot of the outcome
used by the InstaJobs algorithm against the InstaJobs algo-
rithm score. The series are separated for male and female
candidates.
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Table 1: p-values for Joint Hypotheses
Note: This table shows p-values for the joint hypothesis
that all of the moments comparing higher-ranked to lower-
ranked candidates are positive. The top row uses all of the
moments, whereas the second only considersmoments com-
paring women in adjacent ranks, the next row compares
higher-ranked men to lower-ranked women, and so on. The
p-values are constructed using least-favorable critical values
for moment inequalities.

at LinkedIn. In future work, we plan to apply this methodology to

other listwise rankings algorithms at LinkedIn.
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