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Abstract

Standard approaches for causal inference in difference-in-differences and event-study
designs are valid only under the assumption of parallel trends. Researchers are typically
unsure whether the parallel trends assumption holds, and therefore gauge its plausibility
by testing for pre-treatment differences in trends (“pre-trends”) between the treated and
untreated groups. This paper proposes robust inference methods that do not require
that the parallel trends assumption holds exactly. Instead, we impose restrictions on the
set of possible violations of parallel trends that formalize the logic motivating pre-trends
testing — namely, that the pre-trends are informative about what would have happened
under the counterfactual. Under a wide class of restrictions on the possible differences in
trends, the parameter of interest is set-identified and inference on the treatment effect
of interest is equivalent to testing a set of moment inequalities with linear nuisance
parameters. We derive computationally tractable confidence sets that are uniformly
valid (“honest”) so long as the difference in trends satisfies the imposed restrictions.
Our proposed confidence sets are consistent, and have optimal local asymptotic power
for many parameter configurations. We also introduce fixed length confidence intervals,
which can offer finite-sample improvements for a subset of the cases we consider. We
recommend that researchers conduct sensitivity analyses to show what conclusions can
be drawn under various restrictions on the set of possible differences in trends. We
conduct a simulation study and illustrate our recommended approach with applications
to two recently published papers.
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1 Introduction

Conventional methods for causal inference in difference-in-differences and related quasi-experimental
research designs are valid only under the so-called “parallel trends” assumption.1 Researchers are of-
ten unsure whether the parallel trends assumption is valid in applied settings, and they consequently
try to assess its plausibility by testing for differences in trends between the treated and untreated
groups prior to treatment (“pre-trends”). Conditional on not finding a significant pre-trend, inference
is then typically conducted under the assumption that parallel trends holds exactly. The current
approach to inference relying on an exact parallel trends assumption that is assessed via pre-trends
testing suffers from two broad limitations. First, inference will be misleading if in fact the parallel
trends assumption is violated but a pre-trends test fails to detect the violation (Freyaldenhoven,
Hansen and Shapiro, 2019; Bilinski and Hatfield, 2018; Kahn-Lang and Lang, 2018; Roth, 2019).
Second, we may still be interested in learning something about the causal effect of the treatment
even if it is clear that there is a non-zero pre-existing trend, yet standard approaches deliver valid
inference in this case only under strong functional form assumptions. Both of these limitations of
the conventional approach motivate constructing methods for inference that allow the assumption
of exact parallel trends to be relaxed.

The main contribution of this paper is to develop robust inference methods for difference-in-
differences and related research designs that do not require that the parallel trends assumption holds
exactly. Instead, the researcher need only specify a set of restrictions on the possible violations of
parallel trends motivated by economic knowledge, and can conduct a sensitivity analysis to examine
the robustness of their conclusions to different assumptions about such violations. We primarily
consider polyhedral restrictions on the difference in trends, i.e. restrictions that can be written as
a system of linear inequalities. A variety of economic intuitions that commonly arise in difference-
in-differences and related settings can be formalized using such restrictions. For instance, the
intuition behind the common practice of testing for pre-trends is that pre-treatment differences in
trends are informative about counterfactual post-treatment differences in trends – a notion that we
operationalize by restricting the degree of possible non-linearity in the difference in trends. We are
also able to incorporate intuition about simultaneous policy changes or secular trends by imposing
sign or shape restrictions on the difference in trends. Under these restrictions, the treatment effect
of interest is typically set-identified.

To develop uniformly valid inference methods, we exploit the novel observation that the problem
of conducting inference on the treatment effect of interest in our setting is equivalent to a moment
inequality problem with linear nuisance parameters. A practical challenge to testing the implied
set of moment inequalities is that the number of nuisance parameters scales linearly in the number
of post-treatment periods, and thus will often be large (above 10) in typical empirical applications.

1The parallel trends assumption states that the average outcome for the treated and untreated groups
would have moved in parallel if the treatment of interest had not occurred. This is also sometimes referred
to as the “common trends” assumption (Angrist and Pischke, 2009; Lechner, 2011; Cunningham, 2018).

1



This renders many moment inequality procedures, which rely on test inversion over a grid for the
full parameter vector, computationally infeasible. Andrews, Roth and Pakes (2019a, henceforth
ARP) study conditional moment inequality problems with linear nuisance parameters, and propose
confidence sets that condition on the set of sample moments that bind when using a linear program
to profile out the nuisance parameters. We use this conditional inference procedure to obtain
computationally tractable confidence sets that achieve uniform asymptotic size control. We then
exploit additional structure in our setting to derive new results on the asymptotic performance of
conditional confidence sets.2

We provide two novel results on the asymptotic properties of conditional confidence sets in
our setting. First, we show that the conditional confidence sets are consistent, meaning that any
fixed point outside of the identified set is rejected with probability approaching one asymptotically.
Second, we provide a condition under which the conditional confidence sets have local asymptotic
power converging to the power envelope — i.e., the upper bound on the power of any procedure that
controls size uniformly. Intuitively, the condition for optimality requires that the underlying trend
is not aligned with a “corner” of the allowed class in a particular sense. This condition is implied by,
but somewhat weaker than, linear independence constraint qualification (LICQ), which has been
used recently in the moment inequality settings of Gafarov (2019); Cho and Russell (2018); Flynn
(2019); Kaido and Santos (2014).3 In contrast to many previous uses of LICQ, however, we do not
require this condition to obtain uniform asymptotic size control. To prove the optimality result, we
make use of duality results from linear programming and the Neyman-Pearson lemma to show that
both the optimal test and our conditional test converge to a t-test in the direction of the Lagrange
multipliers of the linear program that profiles out the nuisance parameters.

Our results on the local asymptotic power of the conditional confidence sets have two limitations.
First, the condition needed for the conditional confidence sets to have optimal local asymptotic
power does not hold for all parameter values, and in particular fails when the parameter of interest
is point-identified. Second, the conditional confidence sets may have low power in finite samples if
the binding and non-binding moments are not well-separated.

We therefore introduce fixed length confidence intervals (FLCIs), which can address the lim-
itations of the conditional approach in certain special cases of interest. We construct optimal
FLCIs based on affine estimators for the treatment effect of interest, following Donoho (1994) and
Armstrong and Kolesar (2018, 2019). We provide a novel characterization of when the optimal
FLCI is consistent, meaning that any point outside of the identified set is rejected with probability
approaching one asymptotically: the optimal FLCI is consistent if and only if the length of the
identified set at the true population parameter equals its maximum possible length. This condition
is non-restrictive for some classes of differential trends, but is restrictive (and even provably false)

2Specifically, we make use of the fact that the moments are linear in the target parameter and that the
Jacobian of the moments with respect to the nuisance parameters is a known, constant matrix.

3Kaido, Molinari and Stoye (2019) show that constraint qualifications are closely related to other assump-
tions used for inference in the moment inequality literature.
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for others. When this additional condition holds, however, the optimal FLCI achieves optimal
local asymptotic power under the same conditions as the conditional confidence sets. Moreover,
the optimal FLCI is near-optimal in finite sample in certain special cases of interest (Armstrong
and Kolesar, 2018, 2019). In particular, the length of the optimal FLCI is close to the lower bound
among all confidence sets that control size if parallel trends holds and the class of possible underlying
differential trends is convex and centrosymmetric.

We next introduce a novel hybrid procedure that combines the relative strengths of the condi-
tional confidence sets and FLCIs. The hybrid procedure is consistent, and has near-optimal local
asymptotic power when the condition for the optimality of the conditional approach holds. More-
over, we find in simulations (discussed in more detail below) that hybridization with the FLCIs
improves performance in finite sample when the moments are not well-separated. We thus recom-
mend the hybrid approach for settings in which the condition for the consistency of the FLCIs is
not guaranteed.4

For ease of exposition, the main text presents our results in a finite sample normal model. The
finite sample normal model emerges as an asymptotic approximation to a wide range of econometric
settings. In Appendix F, we show that these finite sample results translate to asymptotic results that
hold uniformly over a large class of non-normal data-generating processes satisfying some high-level
regularity conditions.

To explore the performance of our methods in practice, we conduct simulations calibrated to
the 12 papers analyzed by Roth (2019), who systematically reviewed recent papers in three leading
journals. We compute the expected excess length of each procedure, and compare this to an optimal
benchmark, which is derived using the observation that the confidence set that minimizes expected
excess length inverts most powerful tests (Armstrong and Kolesar, 2018). We find that for many
parameter configurations, the conditional confidence sets have excess length within a few percent of
this lower bound. However, as expected, the conditional approach can underperform in cases where
the parameter of interest is (close to) point-identified. The FLCIs perform particularly well in the
special cases where the conditions for their finite-sample near-optimality hold, but can have power
substantially below the conditional test when these conditions fail; in one specification, the excess
length of the conditional confidence sets is within 2% of the optimum, whereas for the FLCIs it is
more than double the optimum. The hybrid approach performs quite well across a wide range of
specifications — its excess length is no more than 17% larger than the other procedures across the
specifications reported in the main text, whereas each of the other two procedures is at least 50%
worse than another in some specification. We thus recommend the hybrid for most cases where the
consistency of the FLCIs is not guaranteed. Lastly, all of the procedures remain computationally
tractable in all specifications, including in cases with over 15 nuisance parameters.

4We also introduce a hybridization between the conditional confidence sets and tests based on least
favorable (LF) critical values, which we recommend for cases where it is known that the FLCIs will be
uninformative. Since the conditional-FLCI hybrid outperforms the conditional-LF hybrid in simulations for
most parameter configurations, we focus mainly on the FLCI hybrid in the main text.
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In practice, we recommend that applied researchers use our methods to conduct a sensitiv-
ity analysis in which they report confidence sets under varying restrictions on the set of possible
violations of parallel trends. For instance, one class of restrictions we consider requires that the
difference in trends not deviate “too much” from linearity, and is governed by a single parameter
M that determines the degree of possible non-linearity. If the researcher is interested in testing
a particular null hypothesis — e.g., the treatment effect in a particular period is zero — then a
simple statistic to report is the “breakdown” value of M at which the null hypothesis of interest
can no longer be rejected.5 We discuss how one can benchmark the value of this parameter using
economic knowledge of possible confounds, as well as placebo periods or treatment groups. The
researcher can also report how her conclusions change with the inclusion of additional sign or shape
restrictions motivated by context-specific knowledge. For instance, in cases where researchers are
concerned about secular trends correlated with treatment, researchers may specify that the under-
lying difference in trends is monotone. Likewise, in cases with known simultaneous policy changes,
researchers may restrict the sign of the bias. Performing such a sensitivity analysis and documenting
how the reported confidence set changes across a range of assumptions makes clear what must be
assumed about the possible violations of parallel trends in order to draw specific conclusions. Our
publicly-available R package HonestDiD provides functions for easy and fast implementation of our
recommended methods.6

We illustrate our empirical recommendations by applying our approach to two recently-published
papers. First, we consider an application to Lovenheim and Willen (2019, henceforth LW), who
study how exposure to public sector duty-to-bargain (DTB) laws as a child affects long-run labor
market outcomes. LW find no clear pre-trends for male employment, but do find substantial pre-
trends for female employment, and therefore focus on their results for men. The example allows
us to illustrate how we can gauge the robustness of the results for men to different assumptions on
the possible violations of parallel trends, as well as how we can use such assumptions to construct
confidence sets for the effect on women despite the presence of a pre-trend. Second, we consider an
application to Benzarti and Carloni (2019), who study the impact of a decrease in the value-added
tax (VAT) on the profitability of restaurants in France, and find large effects of the VAT decrease
on restaurant profitability. We show that the conclusion that restaurant profits increase in the first
year after the VAT cut are robust to a wide range of assumptions about the underlying difference in
trends, but conclusions about the longer-run effects (e.g., four years after the VAT decrease) appear
to be more fragile. This illustrates a general point: when allowing for the possibility of secular
differential trends, bias accumulates over time, and so longer-run estimates will typically be more
sensitive to violations of parallel trends than short-run estimates.

5Similar “breakdown” concepts have been proposed in other partially identified settings (Horowitz and
Manski, 1995; Kline and Santos, 2013; Masten and Poirier, 2019).

6The latest version of the R package may be downloaded here.
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Related Literature This paper contributes to a large and active literature on the economet-
rics of difference-in-differences and related research designs by developing robust inference methods
that allow for the possibility that parallel trends may be violated.7 Several other papers consider
methods for relaxing or circumventing the assumption of exact parallel trends. Manski and Pepper
(2018) consider how the set of identified parameters changes as we relax the parallel trends assump-
tion, but do not consider the problem of statistical inference. Keele, Small, Hsu and Fogarty (2019)
likewise develop techniques for testing the sensitivity of difference-in-differences designs to violations
of the parallel trends assumption, but they do not incorporate information from pre-trends in their
sensitivity analysis. A common approach when there are concerns about violations of the parallel
trends assumption is to adjust for the extrapolation of a linear trend from the pre-treatment pe-
riod (cf. Dobkin, Finkelstein, Kluender and Notowidigdo, 2018; Goodman-Bacon, 2018a,b; Bhuller,
Havnes, Leuven and Mogstad, 2013). This approach provides valid inference only under the restric-
tion that the underlying trend is exactly linear. Our approach nests this restriction as a special
case, but allows for less restrictive assumptions on the class of underlying trends; for instance,
one class of restrictions we consider requires only that the linear extrapolation be approximately
correct. Freyaldenhoven et al. (2019) propose a method that allows for violations of the parallel
trends assumption but requires a covariate that is known to be affected by the confounds but not
the treatment of interest.8

Our robust approach to inference helps to address several concerns related to conventional
practice in difference-in-differences and related research designs. First, a recent literature suggests
that common tests for pre-trends may be underpowered against meaningful violations of parallel
trends, potentially leading to severe undercoverage of conventional confidential intervals, which are
valid only if parallel trends holds exactly (Freyaldenhoven et al., 2019; Bilinski and Hatfield, 2018;
Kahn-Lang and Lang, 2018). For instance, Roth (2019) finds that linear violations of parallel trends
producing bias equal to the estimated treatment effect would be detected less than half the time
by conventional pre-tests in simulations calibrated to several recent papers in leading economics
journals. Second, statistical distortions from pre-testing for pre-trends may further undermine
the performance of conventional inference procedures (Roth, 2019). Third, although there exist
parametric approaches to controlling for pre-existing trends, there are concerns that such methods
are sensitive to functional form assumptions (Wolfers, 2006; Lee and Solon, 2011). Our paper helps
to address these issues by providing tools for inference that do not rely on an exact parallel trends

7Previous work on inference in difference-in-differences and related designs has addressed robustness to
serial correlation and clustered sampling (Arellano, 1987; Moulton, 1990; Bertrand, Duflo and Mullainathan,
2004; Sun and Yan, 2019), and concerns related to having a small number of treated units (Donald and Lang,
2007; Conley and Taber, 2010; Ferman and Pinto, 2018; MacKinnon and Webb, 2019), among other issues.

8In practice, one may be unsure if a covariate satisfies the exclusion restriction required by Freyaldenhoven
et al. (2019). In their applications, Freyaldenhoven et al. (2019) therefore create an event-study plot that
shows estimated placebo pre-treatment effects using their method, which are analogous to pre-period coeffi-
cients in a typical event-study. Since their procedure yields asymptotically normal estimates, one can apply
the methods in this paper to assess the sensitivity of results using their method under various assumptions
on the relationship between pre-treatment and post-treatment violations of the exclusion restriction.
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assumption and that make clear the mapping between the restrictiveness of the assumptions on the
potential differences in trends and the strength of one’s conclusions.

Our work is also complementary to a recent literature on the causal interpretation of the iden-
tified coefficients in two-way fixed effects models in settings with staggered treatment timing or
heterogeneous treatment effects (Meer and West, 2016; Borusyak and Jaravel, 2016; Abraham and
Sun, 2018; Hull, 2018; Athey and Imbens, 2018; de Chaisemartin and D’Haultfœuille, 2018a,b;
Goodman-Bacon, 2018a; Kropko and Kubinec, 2018; Callaway and Sant’Anna, 2019; Imai and
Kim, 2019; Słoczyński, 2018). A key finding of this literature is that regression coefficients from
conventional approaches may not produce convex weighted averages of local average treatment ef-
fects even if parallel trends holds. Additionally, conventional event-study estimators may exhibit
spurious pre-trends when parallel trends holds (Abraham and Sun, 2018). The literature has thus
proposed a number of alternative strategies that allow for consistent estimation of sensible causal
estimands under a suitable parallel trends assumption. We encourage researchers to start by choos-
ing an estimation strategy that yields consistent estimates of the causal parameter of interest under
the best-case assumption of parallel trends. We then recommend using our methods to assess the
robustness of conclusions to potential violations of the parallel trends assumption.9

More broadly, this paper relates to a large literature in econometrics on sensitivity analysis
and misspecification robust inference. Recent work has studied misspecification in the context of
instrumental variables models (Conley, Hansen and Rossi, 2012), generalized method of moments
(Andrews, Gentzkow and Shapiro, 2017, 2019b; Armstrong and Kolesar, 2019), parametric and
semi-parametric models (Bonhomme and Weidner, 2018; Mukhin, 2018), regression discontinuity
designs (Kolesar and Rothe, 2018; Armstrong and Kolesar, 2018), structural models (Christensen
and Connault, 2019), and experimental design (Rosenbaum and Rubin, 1983; Imbens, 2003; Rosen-
baum, 2005; Lee, 2009; Ding and VanderWeele, 2016), among many others. An interesting feature of
our setting is that we use restrictions to relate the degree of bias in the treatment effects estimates
for periods after treatment to pre-trends identified in periods prior to treatment. Our approach
thus shares similar structure with papers in sensitivity analysis that relate bias from selection into
treatment on unobservables to selection on observables in cross-sectional contexts (Altonji, Elder
and Taber, 2005; Oster, 2019).

Finally, our work connects to the rich literature on partial identification and moment inequality
procedures in econometrics. As in Manski and Pepper (2018), we consider relaxations of the as-
sumption of exact parallel trends, under which the treatment effect of interest is partially identified
in difference-in-differences and related settings. The use of partial identification in the analysis of
treatment effects in other observational or quasi-experimental settings dates back to at least Manski
(1990), and has been used since by Balke and Pearl (1997), Heckman and Vytlacil (1999), Man-
ski and Nagin (1998), Manski and Pepper (2000), Ginther (2000), González (2005), Bhattacharya,

9Our approach can be applied so long as the estimator is asymptotically normally distributed, which
covers the vast majority of proposed procedures in difference-in-differences and related research designs.
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Shaikh and Vytlacil (2008), Nevo and Rosen (2012), Kreider, Pepper, Gundersen and Jolliffe (2012),
and Gunsilius (2019), among many others. We show that testing a null hypothesis on the treatment
effect of interest under a relaxation of the parallel trends assumption can be cast as a moment in-
equality problem, and derive novel asymptotic consistency and optimality results for confidence sets
constructed using the conditional approach of ARP. We also propose a new hybrid procedure that
combines fixed-length confidence intervals with conditional confidence sets. This hybrid procedure
may be useful in other settings. Reviews of the wide range of applications of partial identifica-
tion and moment inequality methods in economics include Manski (2003), Tamer (2010), and more
recently Ho and Rosen (2017), Canay and Shaikh (2017), and Molinari (2019).

2 Motivating example: Difference-in-differences

We begin with a stylized three-period difference-in-differences model, which allows us to highlight
the causal parameter of interest, inferential goal, and key assumptions of our approach in a simple
setting. We later introduce the general setting that will be our main focus in Section 3.

2.1 Data-generating process

We observe an outcome Yit for a sample of individuals i “ 1, . . . , N for three time periods, t “
´1, 0, 1. Individuals in the treated group (Di “ 1) receive a treatment of interest between period
t “ 0 and t “ 1.10 The observed outcome can be expressed as Yit “ DiYitp1q ` p1 ´ DiqYitp0q,
where Yitp1q and Yitp0q are the potential outcomes for an individual i in period t if she were or were
not assigned to the treated group. We assume that the treatment has no causal effect before it is
implemented, so that Yitp1q “ Yitp0q for t ă 1.11 We are interested in the average treatment effect
on the treated (ATT) in the period after treatment, τATT “ E rYi,t“1p1q ´ Yi,t“1p0q |Di “ 1s.

In this setting, researchers commonly estimate the regression specification,

Yit “ λi ` φt `
ÿ

s‰0

βs ˆ 1rt “ ss ˆDi ` εit. (1)

This specification is often referred to as a “dynamic event-study regression” or a “two-way fixed
effects model” with dynamic treatment effects (Borusyak and Jaravel, 2016; de Chaisemartin and
D’Haultfœuille, 2018b). It is well-known that in this simple setting, the coefficient β̂1 can be written
as the “difference-in-differences” of sample means across treated and untreated groups between
period t “ 0 and t “ 1. That is, the “post-period” coefficient is

10Formally, for the purposes of this example, we think of our sample of size N “ N0 ` N1 as consisting
of N1 independent draws from the treated pD “ 1q population and N0 independent draws from the control
population pD “ 0q, as in Abadie and Imbens (2006).

11An important case where this could be violated is if individuals modify their behavior in anticipation of
the reform (Malani and Reif, 2015). See Section 9 for additional discussion of anticipation.
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β̂1 “ pȲD“1,t“1 ´ ȲD“1,t“0q ´ pȲD“0,t“1 ´ ȲD“0,t“0q,

where ȲD“d,t“s is the sample mean of Yit for treatment group d in period s. The “pre-period”
coefficient β̂´1 can be expressed similarly as

β̂´1 “ pȲD“1,t“´1 ´ ȲD“1,t“0q ´ pȲD“0,t“´1 ´ ȲD“0,t“0q.

Taking expectations and re-arranging, we see that

E
”

β̂1

ı

“ τATT ` E rYi,t“1p0q ´ Yi,t“0p0q |Di “ 1s ´ E rYi,t“1p0q ´ Yi,t“0p0q |Di “ 0s
looooooooooooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooooooooooon

Post-period differential trend :“ δ1

,

E
”

β̂´1

ı

“ E rYi,t“´1p0q ´ Yi,t“0p0q |Di “ 1s ´ E rYi,t“´1p0q ´ Yi,t“0p0q |Di “ 0s
looooooooooooooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooooooooooooon

Pre-period differential trend :“ δ´1

.

Thus, the post-period regression coefficient β̂1 is biased for the treatment effect τATT if δ1 ‰ 0. The
bias δ1 is the differential trend in outcomes for the two groups between period 0 and period 1 that
would have occurred if the treatment counterfactually did not take place. Likewise, δ´1 is the pre-
period differential trend between groups from period 0 to period ´1. The parallel trends assumption
imposes that the expectation of Yitp0q moves in parallel for the two groups, δ´1 “ δ1 “ 0, in which
case β̂1 is unbiased for the treatment effect of interest.

2.2 Inferential goal

Applied to this illustrative three period difference-in-differences example, this paper considers the
problem of conducting inference on τATT while relaxing the assumption that δ1 is exactly zero. Of
course, if we allow δ1 to be completely unrestricted, then the data will be uninformative about the
value of τATT . However, the motivating logic behind the common practice of pre-trends testing
is that the pre-period difference in trends δ´1 is informative about the counterfactual post-period
difference in trends δ1. We thus may be willing to place restrictions on the possible values of δ1

given δ´1.
We formalize this intuition by assuming that δ “ pδ´1, δ1q

1
P ∆, where ∆ is some class of possible

differential trends that is specified by the researcher. The usual parallel trends assumption is thus
the special case where ∆ “ t0u. Given a set ∆, we then construct confidence sets that are uniformly
valid over a wide class of distributions with δ P ∆. That is, for P a class of distributions P such
that δ P ∆ under P, we construct confidence sets Cn satisfying

lim inf
nÑ8

inf
PPP

PP pτ P Cnq ě 1´ α. (2)
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A confidence set Cn that satisfies this criterion is sometimes referred to as “uniform” or “honest”
(Andrews, Cheng and Guggenberger, Forthcoming; Li, 1989; Armstrong and Kolesar, 2018).

In practice, the class of allowed differential trends ∆ will often be parameterized by M , which
indexes the extent to which the counterfactual post-period difference in trends can differ from
an extrapolation of the pre-period difference in trends. We recommend that researchers report
confidence sets under a variety of values of M to give the reader a sense of how much regularity
needs to be imposed ex ante to obtain informative inference. We now discuss a few specifications
for ∆ that may be reasonable in empirical applications.

2.3 Possible choices of ∆

The class of possible violations of parallel trends ∆ must be specified by the researcher, and the
choice of ∆ will depend on the economic context. Here, we highlight several choices of ∆ that
may be reasonable in applications. These examples formalize intuitive arguments that are made
in the literature regarding possible violations of parallel trends. We discuss possible restrictions
in the stylized three-period model presented above, and also discuss how these restrictions can be
generalized to cases with multiple periods, as will be common in applications.

Bounds on changes in slope. In practice, researchers concerned about possible violations
of the parallel trends assumption often include treatment-group specific linear trends.12 In the
motivating three period model, such an approach will recover the causal parameter τATT under the
assumption that the differential trend is exactly linear, δ1 “ ´δ´1, as shown in Figure 1. There
are concerns, however, that this linear extrapolation of the pre-period trend to the post-period
may not hold exactly (Wolfers, 2006; Lee and Solon, 2011). A natural relaxation of the linear
trend model is to require only that the linear extrapolation be approximately correct, meaning that
δ1 P r´δ´1´M,´δ´1`M s, whereM governs the maximum possible error of the linear extrapolation
(i.e. the change in slope of the differential trend). This corresponds with setting ∆ equal to

∆SDpMq :“ tpδ´1, δ1q
1 : δ1 P ´δ´1 ˘Mu.

This restriction can easily be extended to settings with additional periods by bounding the
extent to which the slope of the differential trend can change between consecutive periods. For
instance, in Section 3 we consider a more general model where the researcher estimates

¯
T pre-event

12That is, instead of estimating specification (1), researchers estimate

Yit “ λi ` φt ` βtrend ˆDi ˆ t`
ÿ

są0

βs ˆ 1rt “ ss ˆDi ` εit,

which Dobkin et al. (2018) refer to as a “parametric event-study.” An analogous approach is to estimate a
linear trend using only observations prior to treatment, and then subtract out the estimated linear trend
from the observations after treatment (Bhuller et al., 2013; Goodman-Bacon, 2018a,b).
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Figure 1: Linear and Approximately Linear Trends

coefficients and T̄ post-event coefficients (with period t “ 0 again normalized to 0). In this context,
δ is a

¯
T ` T̄ dimensional vector describing the counterfactual differential trend over the observed

sample period, and we can impose approximately linearity by requiring that δ lie in the set

∆SDpMq :“ tδ : |pδt`1 ´ δtq ´ pδt ´ δt´1q| ďM, @tu, (3)

where we adopt the convention that δ0 “ 0.13 The parameter M ě 0 again governs the amount by
which the slope of δ can change between consecutive periods, and in the special case where M “ 0,
∆SD requires that the difference in trends be linear. ♦

Bounds on relative magnitudes In some cases, we may be willing to assume that if the
pre-period difference in trends is small, then the counterfactual post-period difference in trends
would also be small. However, if the two groups did not follow similar trends in the pre-period, then
we may find it plausible that the difference in trends between the two groups would have changed
substantially between the pre- and post-periods. One way to formalize this intuition in the context
of our 3-period model is to allow the magnitude of δ1 to depend on the magnitude of δ´1,

∆RM pM̄q “ tpδ´1, δ1q : |δ1| ď M̄ |δ´1|u.

This type of restriction can be extended to multiple periods by bounding the percentage change in
the slope of the differential trend,

∆RM pM̄q :“ tδ : |δt`1 ´ δt| ď M̄ |δt ´ δt´1|, @tu. (4)

The parameter M̄ ě 0 places an upper bound on the percentage change in the magnitude of the
slope between periods. ♦

13∆SDpMq bounds the discrete analog of the second derivative of δ, and is thus similar to restrictions
on the second derivative of the conditional expectation function or density in regression discontinuity set-
tings (Kolesar and Rothe, 2018; Frandsen, 2016). Smoothness restrictions are also used to obtain partial
identification in Kim, Kwon, Kwon and Lee (2018).
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Figure 2: Example choices for ∆

δ1

δ´1

∆SD

δ1

δ´1

∆RM

δ1

δ´1

∆SDPB

δ1

δ´1

∆RMI

Note: This figure shows diagrams of potential restrictions ∆ on the set of possible violations of parallel
trends. ∆SD requires approximate linearity by restricting the change in slope of the differential trend. ∆RM

bounds the magnitude of the post-period bias relative to the magnitude of the pre-trend. ∆SDPB adds
the restriction that the post-period bias be positive to ∆SD. Likewise, ∆RMI adds the restriction that the
differential trend be increasing over time to ∆RM .

Sign and monotonicity restrictions Context-specific knowledge may sometimes imply sign
or shape restrictions on the differential trend. For instance, suppose we know of a simultaneous,
confounding policy change that we expect would have a positive effect on the outcome of interest.
In this case, we might restrict that the bias in the post-treatment period be positive,

δ P ∆PB :“ tδ : δt ě 0 @t ě 0u.

Likewise, it may be reasonable to impose monotonicity in cases where we are concerned about
secular trends that we expect would have continued following the date of treatment.14 For instance,
we could impose that the differential trend be increasing,

14The discussion of possible violations of parallel trends in applied work often implicitly assumes mono-
tonicity. For example, Lovenheim and Willen (2019) argue that violations of parallel trends cannot explain
their results because “pre-[treatment] trends are either zero or in the wrong direction (i.e., opposite to the di-
rection of the treatment effect).” Greenstone and Hanna (2014) estimate upward-sloping pre-existing trends
and argue that “if the pre-trends had continued” their estimates would be upward biased. The so-called
Ashenfelter (1978)’s dip in job training programs is a well-known exception wherein we expect violations of
parallel trends to be non-monotonic.
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δ P ∆I :“ tδ : δt ě δt´1 @tu.

These sign and monotonicity restrictions can also be combined with the bounds on changes in slope
or relative magnitudes imposed above. For example, we will define ∆SDPBpMq :“ ∆SDpMqX∆PB

and ∆RMIpM̄q :“ ∆RM pM̄q X∆I . ♦

Figure 2 gives a geometric depiction of the sets ∆SD,∆RM ,∆SDPB, and ∆RMI in the simple case
in which there is one pre-period and one post-period coefficient.

3 General Set-up

We now introduce the assumptions, target parameter, and inferential goal considered throughout the
remainder of the paper. We consider a finite-sample normal model, which arises as an approximation
to the motivating model discussed in Section 2 and to a variety of other econometric settings of
interest. In Appendix F, we show that our results derived in the context of the finite-sample normal
model hold uniformly over a large class of non-normal data-generating processes.

3.1 Finite sample normal model

We consider the model,

β̂n „ N pβ, Σnq , (5)

where β̂n P R¯
T`T̄ , and Σn “

1
nΣ˚ for Σ˚ a known, positive-definite p

¯
T ` T̄ q ˆ p

¯
T ` T̄ q matrix. We

partition the event-study coefficients β̂n into vectors corresponding with the pre-treatment and post-
treatment periods, β̂n “ pβ̂1n,pre, β̂1n,postq1, where β̂n,pre P R¯

T and β̂n,post P RT̄ . We adopt analogous
notation to partition other vectors that are the same length as β̂n into pre and post components.

This finite sample normal model (5) can be viewed as an asymptotic approximation to a wide
range of econometric settings. In particular, under mild regularity conditions, a variety of estimation
strategies will yield asymptotically normal event-study estimates,

?
n
´

β̂n ´ β
¯

d
ÝÑ N p0, Σ˚q.15

This convergence in distribution suggests the finite-sample approximation β̂n
d
« N pβ, Σnq , where

d
« denotes approximate equality in distribution and Σn “

1
nΣ˚. In the main text of the paper, we

derive results assuming this equality in distribution holds exactly in finite samples, and in Appendix

15Examples of data-generating processes that yield asymptotically normal event-study estimates include
the two-way fixed effects model (1), the GMM procedure proposed by Freyaldenhoven et al. (2019), instru-
mental variables event-studies (Hudson, Hull and Liebersohn, 2017), the estimation strategies of Abraham
and Sun (2018) and Callaway and Sant’Anna (2019) to address issues with non-convex weights on cohort-
specific effects in staggered treatment designs, as well as a range of procedures that flexibly control for
differences in covariates between treated and untreated groups (e.g., Heckman, Ichimura, Smith and Todd,
1998; Abadie, 2005; Sant’Anna and Zhao, 2019).
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F, we translate our results into uniform asymptotic statements that hold over a large class of non-
normal data-generating processes.

We assume that the mean vector β satisfies the following decomposition.

Assumption 1. The parameter vector β can be decomposed as

β “

˜

τpre

τpost

¸

loooomoooon

:“ τ

`

˜

δpre

δpost

¸

loooomoooon

:“ δ

, (6)

with τpre ” 0.

The first term, τ , represents the time path of dynamic causal effects of interest. We assume that
the treatment has no causal effect prior to its implementation, so τpre “ 0. The second term,
δ, represents the difference in trends between the treated and untreated groups that would have
occurred absent treatment.16 In this general setting, the parallel trends assumption corresponds to
imposing that δ “ 0. Therefore, under parallel trends, β “ τ .

3.2 Target parameter and identification

The parameter of interest is a scalar, linear combination of the post-treatment causal effects, θ :“

l1τpost for some known T̄ -vector l. For example, the parameter θ is the t-th period causal effect τt
when the vector l equals the t-th standard basis vector. Similarly, θ is the average causal effect
across all of the post-treatment periods when l “

`

1
T̄
, ..., 1

T̄

˘1. Under the usual exact parallel trends
assumption (δ “ 0), θ is point-identified.

We relax the exact parallel trends assumption by assuming only that δ lies in some set of
possible violations of parallel trends ∆, which is specified by the researcher. The usual parallel
trends assumption is thus a special case with ∆ “ t0u. Under the assumption that δ P ∆ ‰ t0u, the
parameter θ will typically only be set-identified (rather than point-identified). For a given value of
β, the set of values θ consistent with β under the assumption that δ P ∆ is

Sp∆, βq :“

#

θ : Dδ P ∆, τpost P RT̄ s.t. l1τpost “ θ, β “ δ `

˜

0

τpost

¸+

, (7)

which we refer to as the identified set.
We note that the identified set has a simple characterization when ∆ is a convex set. In

particular, it is clear from (7) that if ∆ is convex, then so too is Sp∆, βq, and thus the identified

16In settings with staggered treatment timing and treatment effect heterogeneity, the vector τpost that is
identified by a two-way fixed effects specification may represent some weighted sum of cohort-specific effects.
Researchers should take care to specify their estimator in such a way that τpost has a meaningful, causal
interpretation. See, e.g., recent work by Abraham and Sun (2018), among others.
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set is an interval in R. Furthermore, re-arranging terms in the definition given in (7), the identified
set can be equivalently written as

Sp∆, βq “ tθ : Dδ P ∆ s.t. δpre “ βpre, θ “ l1βpost ´ l
1δpostu. (8)

It is then immediate from (8) that the lower bound of the interval S is

θlb :“ l1βpost ´

ˆ

max
δ
l1δpost, s.t. δ P ∆, δpre “ βpre

˙

loooooooooooooooooooooooomoooooooooooooooooooooooon

“:bmaxpβpre;∆q

. (9)

Likewise, the upper bound is given by

θub :“ l1βpost ´

ˆ

min
δ
l1δpost, s.t. δ P ∆, δpre “ βpre

˙

looooooooooooooooooooooomooooooooooooooooooooooon

“:bminpβpre;∆q

. (10)

3.3 Inferential goal

Our goal is then to construct confidence sets that are valid for all parameter values θ in the identified
set. That is, we wish to construct sets Cn satisfying

inf
δP∆,τ

inf
θPSp∆,δ`τq

Ppδ,τ,Σnq pθ P Cnq ě 1´ α, (11)

which is the finite-sample analog of the uniform asymptotic coverage criterion (2). Although in
the main text we focus on this finite-sample coverage criterion, in Appendix F we show how our
finite-sample coverage results translate to uniform asymptotic coverage results over a wide class
of non-normal data-generating processes. We note that (11) requires proper coverage of the true
parameter of interest θ “ l1τpost, rather than coverage of the full identified set (Imbens and Manski
(2004)). Note also that in (11), we subscript the probability operator by pδ, τ,Σnq to make explicit
that the distribution of β̂n (and hence Cn) depends on these parameters. We adopt this notation
throughout the paper.

4 Conditional Confidence Sets

In this section, we describe our main procedure for constructing robust confidence sets. We focus on
the case where the set of possible violations ∆ takes the polyhedral form, ∆ “ tδ : Aδ ď du, which
covers many leading examples. We first show that when the set ∆ takes this form, the problem
of conducting robust inference in difference-in-differences and event-study designs is equivalent to
a moment inequality problem with linear nuisance parameters. The dimension of the nuisance
parameters scales linearly with the number of post-treatment periods, and thus will frequently be
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large (above 10) in practical applications. We next show that the conditioning approach of ARP,
which exploits the linear structure of the problem, can be used to obtain confidence sets that satisfy
the uniform coverage restriction (11) and remain computationally tractable in practice. In Section
5, we then derive novel results on the power of this procedure in our context.

4.1 Polyhedral forms for ∆

As mentioned, we focus on classes ∆ that take a polyhedral form, meaning it can be expressed as
a series of linear restrictions on δ.

Assumption 2 (Polyhedral shape restriction). The class ∆ takes the form

∆ “ tδ : Aδ ď du, (12)

for some matrix A and vector d, where the matrix A has no all-zero rows.

While this assumption is not without loss of generality, all but one of the leading examples provided
in Section 2.3 can be written in this form. Intuitively, the set ∆ is a polyhedron if it is a convex
set with flat sides. It is thus immediate from Figure 2 that with two dimensions, ∆SD,∆SDPB,

and ∆RMI can all be written as polyhedra, and the geometric intuition from the two-period case
extends easily to higher dimensions.17 We also can see from Figure 2 that ∆RM is not convex and
thus not a polyhedron, although it can be expressed as the union of polyhedra. One can thus form
a confidence set for ∆RM by taking the union of the confidence sets for each of the polyhedra that
compose it.

4.2 Representation as a moment inequality problem with linear nui-

sance parameters

Consider the problem of testing the null hypothesis, H0 : θ “ θ̄, δ P ∆ when ∆ “ tδ : Aδ ď du. In
this section, we will show that testing H0 is equivalent to testing a system of moment inequalities
with linear nuisance parameters.

Our model implies Epδ,τ,Σnq
”

β̂n ´ τ
ı

“ δ, and hence δ P ∆ if and only if Epδ,τ,Σnq
”

Aβ̂n ´Aτ
ı

ď

d. Define Yn “ Aβ̂n ´ d and let Mpost “ r0, Is
1 be the matrix such that τ “ Mpostτpost. It is then

immediate that the null hypothesis H0 is equivalent to the composite null

H0 : Dτpost P RT̄ s.t. l1τpost “ θ̄ and Epδ,τ,Σnq rYn ´AMpostτposts ď 0. (13)

17For example, recall that |x| ďM is equivalent to x ďM and ´x ďM . In the case with one pre-period

and one post-period, we can thus write ∆SDpMq “ tδ : ASDδ ď dSDu for ASD “

ˆ

´1 1
1 ´1

˙

and

dSD “

ˆ

M
M

˙

. This generalizes naturally when there are multiple pre-periods and multiple post-periods.
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Here, τpost P RT̄ is a vector of nuisance parameters that must satisfy the linear constraint l1τpost “ θ̄

under H 10.
By applying a change of basis, we can further re-write H0 as an equivalent composite null

hypothesis with an unconstrained nuisance parameter. In particular, we can re-write the expression

AMpostτpost as Ã

˜

θ

τ̃

¸

, where Ã is the matrix that results from applying a suitable change of basis

to the columns of AMpost, and τ̃ P RT̄´1.18 We then see that H0 is equivalent to

H0 : Dτ̃ P RT̄´1 s.t. E
”

Ỹnpθ̄q ´ X̃τ̃
ı

ď 0, (14)

where Ỹ pθq “ Yn ´ Ãp¨,1qθ̄ and X̃ “ Ãp¨,´1q. Note that under the finite-sample normal model (5),
Ỹnpθ̄q is normally distributed with covariance matrix Σ̃n “ AΣnA

1. We therefore have shown that
testing the null hypothesis H0 : θ “ θ̄ is equivalent to testing a set of moment inequalities with
linear nuisance parameters.

4.3 Constructing conditional confidence sets

An important practical consideration for testing hypotheses of the form (14) is that the dimension of
the nuisance parameter τ̃ P RT̄´1 may be large in practice. For instance, in Section 10 we consider
a recent paper in which T̄ “ 23. Moreover, 5 of the 12 recent event-study papers reviewed in Roth
(2019) have T̄ ą 10. This renders many moment inequality methods, particularly those which rely
on test inversion over a grid for the full parameter vector, practically infeasible in this context. We
now show how the conditional approach of ARP, which directly exploits the linear structure of the
hypothesis (14), can be applied to obtain computationally tractable and powerful tests even when
the number of post-periods T̄ is large.19

To describe the conditional testing approach, suppose we wish to test (14) for some fixed θ̄. The
conditional testing approach considers tests based on the test statistic

η̂ :“ min
η,τ̃

η s.t. Ỹnpθ̄q ´ X̃τ̃ ď σ̃n ¨ η, (15)

where σ̃n “
b

diagpΣ̃nq. This linear program selects the value of the nuisance parameters τ̃ P RT̄´1

18Specifically, let Γ be a square matrix with the vector l1 in the first row and remaining rows chosen so

that Γ has full rank. Define Ã :“ AMpostΓ
´1. Then AMpostτ “ ÃΓτpost “ Ã

¨

˝

θ
Γp´1,¨qτpost
looooomooooon

:“τ̃

˛

‚.

19Other moment inequality methods have been proposed for subvector inference, but typically do not
exploit the linear structure of our setting — see, e.g, Chen, Christensen and Tamer (2018); Bugni, Canay
and Shi (2017); Kaido et al. (2019); Chernozhukov, Newey and Santos (2015); Romano and Shaikh (2008).
Gafarov (2019), Cho and Russell (2018), and Flynn (2019) also provide methods for subvector inference
with linear moment inequalities, but in contrast to our approach require a linear independence constraint
qualification (LICQ) assumption for size control.
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that produces the most slack in the maximum moment, measured in standard deviation units.
Standard duality results from linear programming (e.g. Schrijver (1986), Section 7.4) imply that if
the value η̂ obtained from the so-called primal linear program (15) is finite, then it is equal to the
optimal value of the dual program,

η̂ “ max
γ

γ1Ỹnpθ̄q s.t. γ1X̃ “ 0, γ1σ̃n “ 1, γ ě 0. (16)

If a vector γ˚ is optimal in the dual problem above, then it is a vector of Lagrange multipliers for
the primal problem. We will denote by V̂n the set of optimal vertices of the dual program.20

To derive critical values for our test, we analyze the distribution of η̂ conditional on the event
that a vertex γ˚ is optimal in the dual problem. Lemma 9 of ARP shows that conditional on the
event γ˚ P V̂n and a sufficient statistic Sn for the nuisance parameters, the test statistic η̂ follows a
truncated normal distribution. In particular,

η̂ | tγ˚ P V̂n, Sn “ su „ ξ | ξ P rvlo, vups, (17)

where ξ „ N
´

γ1˚µ̃, γ
1
˚Σ̃nγ˚

¯

, µ̃ “ E
”

Ỹnpθ̄q
ı

, Sn “ pI ´ Σ̃nγ˚
γ1˚Σ̃nγ˚

γ1˚qỸnpθ̄q, and vlo, vup are known

functions of Σ̃n, s, γ˚.21 One can show that all quantiles of the conditional distribution of η̂ in the
previous display are increasing in γ1˚µ̃,22 and the null hypothesis (14) implies that γ1˚µ̃ ď 0.

We therefore select the critical value for the conditional test to be the 1 ´ α quantile of the
truncated normal distribution ξ|ξ P rvlo, vups under the worst-case assumption that γ1˚µ̃ “ 0. To
specify this formally, denote by Fξ | ξPrvlo,vupsp¨;σ2q the CDF of ξ „ N

`

0, σ2
˘

truncated to rvlo, vups.
Let ψCα pỸnpθ̄q, Σ̃nq denote an indicator for whether the conditional test rejects at the 1 ´ α level.
We define the conditional test such that

ψCα pỸnpθ̄q, Σ̃nq “ 1 ðñ Fξ | ξPrvlo,vupspη̂; γ1˚Σ̃nγ˚q ą 1´ α. (18)

It follows immediately from Proposition 6 in ARP that the conditional test controls size,

sup
δP∆,τ

sup
θPSp∆,δ`τq

Epδ,τ,Σnq
”

ψCα pỸnpθq, Σ̃nq

ı

ď α. (19)

A confidence set satisfying the uniform coverage criterion (11) can then be constructed by test

20In general, there may not be a unique solution to the dual program. However, Lemma 11 of ARP shows
that conditional on any one vertex of the dual program’s feasible set being optimal, every other vertex is
optimal with either probability 0 or 1. It thus suffices to condition on the event that a vector γ˚ P V̂ .

21The cutoffs vlo and vup are the maximum and minimum of the set tx : x “ maxγPFn γ
1ps` Σ̃nγ˚

γ1˚Σ̃nγ˚
xqu

when γ1˚Σ̃nγ˚ ‰ 0, where Fn is the feasible set of the dual program (16). When γ1˚Σ̃nγ˚ “ 0, we define
vlo “ ´8 and vup “ 8, so the conditional test rejects if and only if η̂ ą 0.

22This follows from the fact that the truncated normal distribution ξ|ξ P rvlo, vups has the monotone
likelihood ratio property in it is mean (see, e.g. Lemma A.1 in Lee, Sun, Sun and Taylor (2016)).

17



inversion for the scalar parameter θ. The conditional confidence set is given by

CCα,n :“ tθ̄ : ψCα pỸnpθ̄q, Σ̃nq “ 0u. (20)

Remark 1. For each value of θ̄, the test statistic η̂ can be computed by solving the linear program
(15). To form the confidence set CCα,n, one only needs to perform test inversion over a grid of values
for the scalar parameter θ̄, and thus the problem remains highly tractable even when T̄ is large.
Moreover, the commonly-used dual simplex algorithm for linear programming returns a vertex to
the dual solution (16), so an optimal dual vertex γ˚ can be obtained from standard packages without
further calculation. We provide R code for easy implementation of this procedure.

Remark 2. To gain intuition for the conditional test, consider the simple setting in which we have
one post-period pT̄ “ 1q and are interested in the treatment effect in the first period, θ “ τ1. In this
case, there are no nuisance parameters, and the form of the conditional test simplifies substantially.
The test statistic η̂ is the maximum of the standardized moments, η̂ “ maxj Ỹn,j{σ̃n,j , where
σ̃n,j is the standard deviation of Ỹn,j . The conditional test rejects in this case if and only if
Φpη̂q´Φpvloq

1´Φpvloq
ą 1´ α. Moreover, if the moments Ỹn are uncorrelated with each other, then vlo is the

maximum of the non-binding standardized moments, vlo “ maxj‰ĵ Ỹn,j{σ̃n,j , where ĵ denotes the
location of the maximum standardized moment. �

5 Asymptotic Power of Conditional Confidence Sets

We now analyze the properties of the conditional confidence sets. For ease of exposition, we consider
limits as nÑ8 in the finite-sample normal model defined in Section 3.23 In Appendix F, we show
that these results hold uniformly over a wide class of non-normal data-generating processes.

We present two main results on the asymptotic power of the conditional confidence sets. We
first show that the conditional test is pointwise consistent, meaning that any point outside of the
identified set is rejected with probability going to one as nÑ8. We next provide a condition under
which the power of the conditional test converges to the power envelope in a n´1{2-neighborhood
of the identified set.

Both our consistency and local asymptotic power results are novel, and exploit additional struc-
ture in our problem not present in the somewhat more general setting considered in ARP. ARP
consider testing null hypotheses of the form H0 : Dτ s.t. E rY pθq ´Xτ |Xs ď 0, almost surely. Our
setting, in which we are interested in testing the hypothesis (14), is thus a special case of the testing
problem considered by ARP in which i) the variable X takes the degenerate distribution X “ X̃,
and ii) Y pθq “ Ỹ pθq is linear in θ. Both of these features are important for the results obtained in
this section. For instance, if i) fails and X is continuously distributed, then the tests proposed by

23The results in this section as nÑ 8 for β̂n „ N
`

β, 1
nΣ˚

˘

are similar in spirit to the “small-σ” asymp-
totics in e.g., Kadane (1971); Moreira and Ridder (2019).
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ARP will generally not be consistent, as they do not allow for the number of moments to grow with
n. Likewise, our local asymptotic power results exploit the geometric structure imposed by features
i) and ii).

5.1 Consistency

We first show that the conditional test is consistent, meaning that any fixed point outside of the
identified set is rejected with probability approaching one as the sample size nÑ8.

Proposition 5.1. The conditional test is consistent. That is, for any δA P ∆, τA P RT̄ , and
θout R Sp∆, δA ` τAq,

lim
nÑ8

PpδA,τA,Σnq
`

θout R CCα,n
˘

“ 1.

We present this result for fixed values of pδA, τAq for ease of exposition. Proposition F.3 in Appendix
F shows that the conditional test is uniformly consistent for points at a fixed distance from the
identified set over a wide class of data-generating processes.

5.2 Optimal Local Asymptotic Power

We next consider the local asymptotic power of the conditional test. We provide a condition under
which the power of the conditional test converges to the power envelope in a n´

1
2 -neighborhood of

the identified set. Intuitively, this condition guarantees that the binding and non-binding moments
are sufficiently well-separated at points close to the boundary of the identified set.

Assumption 3. Let ∆ “ tδ : Aδ ď du and fix δA P ∆. Consider the optimization:

bmaxpδA,preq “ max
δ
l1δpost s.t. Aδ ď d, δpre “ δA,pre,

and assume it has a finite solution. For δ˚ a maximizer to the above problem, let Bpδ˚q index the
set of binding inequality constraints, so that ApBpδ˚q,¨qδ˚ “ dBpδ˚q and Ap´Bpδ˚q,¨qδ

˚ ´ d´Bpδ˚q “

´ε´Bpδ˚q ă 0. Assume that there exists a maximizer δ˚ to the problem above such that the rank of
ApBpδ˚q,postq is equal to |Bpδ˚q|. Analogously, assume that there is a finite solution to the analogous
problem that replaces max with min, and that there is a minimizer δ˚˚ such that ApBpδ˚˚q,postq has
rank |Bpδ˚˚q|.

Assumption 3 considers the problem of finding the differential trend δ P ∆ that is consistent with the
pre-trend identified from the data (δA,pre) and causes l1β̂post to be maximally biased for θ :“ l1τpost.
It requires that the “right” number of moments bind when we do this optimization.
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Remark 3. Assumption 3 is closely related to, but slightly weaker than, linear independence
constraint qualification (LICQ). LICQ has been used recently in the moment inequality settings
of Gafarov (2019); Cho and Russell (2018); Flynn (2019) and Kaido and Santos (2014); see also
Kaido et al. (2019), whose results connect constraint qualifications to other common assumptions
in the moment inequality literature. We show in Appendix A that LICQ is equivalent to a modified
version of Assumption 3 that replaces “there exists a maximizer δ˚” with “for every maximizer δ˚”
(and analogously for the minimizer δ˚˚). Thus, LICQ is equivalent to Assumption 3 when the
optimizations considered in Assumption 3 have unique solutions, but potentially weaker when there
are multiple solutions. We note, however, that while many of the recent papers just mentioned
require LICQ for asymptotic size control, we impose Assumption 3 only for our results on local
asymptotic power. �

Remark 4. In the special case with one pre-period p
¯
T “ 1q and one post-period pT̄ “ 1q, Assump-

tion 3 has a simple graphical interpretation. It is satisfied whenever ∆ has non-empty interior and δ
is not vertically aligned with a vertex. Figure 3 shows the areas at which Assumption 3 holds/fails
for three of our ongoing examples. We see from the figure that the assumption holds everywhere
for ∆SD when M ą 0, and Lebesgue almost everywhere for ∆SDPB and ∆RMI when M ą 0 and
M̄ ą 0. We note, however, that the sets ∆SDp0q,∆SDPBp0q,∆RMIp0q all have empty interior, and
so Assumption 3 fails for these cases (in which θ is point-identified). More generally, one can show
that Assumption 3 never holds if θ is point identified. �

Figure 3: Diagram of where Assumption 3 holds. The assumption holds (fails) for values of
δ plotted in green (red).

δ1

δ´1

∆SD

δ1

δ´1

∆SDPB

δ1

δ´1

∆RMI

Under Assumption 3, the local power of the conditional test converges to the power envelope
as nÑ8. Let Iαp∆,Σnq denote the class of confidence sets that satisfy the finite sample coverage
criterion in (11) at the 1´α level. Then, the power of the conditional test converges to the optimum
over Iαp∆,Σnq in a n´1{2-neighborhood of the identified set.
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Proposition 5.2. Fix δA P ∆, τA, and suppose Σ˚ is positive definite. Let θubA “ supθ Sp∆, δA`τAq
be the upper bound of the identified set. Suppose Assumption 3 holds. Then, for any x ą 0,

lim
nÑ8

PpδA,τA,Σnq
ˆ

pθubA `
1
?
n
xq R CCα,n

˙

“ lim
nÑ8

sup
Cα,nPIαp∆,Σnq

PpδA,τA,Σnq
ˆ

pθubA `
1
?
n
xq R Cα,n

˙

“ Φpc˚x´ z1´αq,

for a positive constant c˚.24 The analogous result holds replacing θubA `
1?
n
x with θlbA ´

1?
n
x, for θlbA

the lower bound of the identified set (although the constant c˚ may differ).

Proposition F.4 in Appendix F shows that this result holds uniformly over a large class of distri-
butions that satisfy a uniform version of Assumption 3, meaning that the non-binding moments in
the problem bmax are uniformly bounded away from binding.

5.2.1 Intuition for local asymptotic optimality

We now sketch the intuition for why the local asymptotic power of the conditional test converges
to the power envelope. For simplicity, we focus on the simple case with one pre-period and one
post-period. Recall from Remark 4 that in this case, Assumption 3 implies that a single moment
determines the upper bound of the identified set. The argument that the local asymptotic power of
the conditional test converges to the power envelope then proceeds in two steps. First, we show that
the optimal test converges to a t-test of the moment that determines the boundary of the identified
set. Next, we show that the power of the conditional test converges to the power of this same t-test.

First, focus on the form of the optimal test. Consider the problem of testing the composite
null hypothesis H0 : τ1 “ τ̄1, δ P ∆ against the point alternative HA : pδ, τ1q “ pδA, τAq. Since by
definition, β “ δ`Mpostτ1, this is equivalent to testing H0 : β P B0pτ̄1q “ tβ : β “ δ`Mpostτ̄1, δ P

∆u against HA : β “ δA `MpostτA “: βA. It can be shown that B0 is convex, and so the Neyman-
Pearson lemma implies that the most powerful test between H0 and HA is a t-test that rejects for
large values of pβA´ β̃q1Σ´1

n β̂n, where β̃ is the closest point in B0 to βA in the Mahalanobis distance
using Σn. Moreover, if β̃ is in the interior of a side of B0 (i.e. not at a vertex), then this t-test is
merely a one-sided t-test of the sample moment corresponding with that edge. Figure 4 depicts this
testing problem for when ∆ “ ∆RMIpM̄q. As shown in the figure, Assumption 3 implies that βA
falls in the interior of an edge of B0pτ

ubq. By continuity, for n sufficiently large, the closest point in
B0pτ

ub` x{
?
nq will also fall in the interior of that edge. Hence, the most powerful test against HA

will be a one-sided t-test of the moment that determines the upper bound of the identified set.

24In particular, letting B “ Bpδ˚˚q as defined in Assumption 3, c˚ “ ´γ̄1BÃpB,1q{σB , where σB “
b

γ̄1BApB,¨qΣ
˚A1

pB,¨qγ̄B and γ̄B is a non-zero vector such that γ̄1BÃpB,´1q “ 0, γ̄B ě 0. The vector γ̄B is
unique up to scale.
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Figure 4: Optimal testing problem for ∆ “ ∆RMI

β1

β´1

βA

B0pτ
ubq

β1

β´1

βA

β̃

B0pτ
ub ` x?

n
q

Note: This figure illustrates the optimal testing problem discussed in Section 5.2.1 when ∆ “ ∆RMI . By
construction, τub is the value such that βA falls on the lower envelope of B0pτ

ubq, as shown in the left panel.
Assumption 3 guarantees that βA is not at a vertex. The right panel depicts the most powerful test between
H0 : β P B0pτ

ub` x?
n
q and HA : β “ βA, which is a t-test between βA and β̃, the closest point in B0pτ

ub` x?
n
q

to βA in Mahalanobis distance. For x?
n
sufficiently small, β̃ will also not be at a vertex. The optimal test is

thus a t-test of the sample moment corresponding with the lower bound of B0pτ
ub ` x?

n
q. In this example,

the most powerful test is t-test that rejects for large values of β̂n,1.

Next, consider the conditional test. In the case with one pre-period and post-period, the con-
ditional test rejects if Φpη̂q´Φpvloq

1´Φpvloq
ą 1 ´ α, where η̂ is the t-statistic of the largest standardized

moment, and conditional on the location of the largest moment (and a sufficient statistic), η̂ is
standard normal truncated to rvlo,8q. Observe that if vlo “ ´8, then the conditional test rejects
if Φpη̂q ą 1´α, which corresponds with a t-statistic of the maximal moment. However, Assumption
3 guarantees that for values of τ̄1 close to τub, the mean of the moment that determines the upper
bound of the identified set is larger than the mean of the other moments. Thus, since Σn Ñ 0 as
n Ñ 8, this moment will be maximal with probability going to 1. Intuitively, conditioning on the
event that this moment is maximal will therefore provide no information as nÑ8. Since vlo repre-
sents the lower truncation from conditioning on the location of the maximal moment, vlo Ñp ´8.
Hence, the power of the conditional test converges to the power of a one-sided t-test of the moment
that determines the upper bound of the identified set.

Our optimal local asymptotic power results for the conditional test are thus closely related
to the fact that as all but one of the moments becomes arbitrarily slack (in standard deviation
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units), the conditional test converges in probability to a one-sided t-test of the binding moment (see
Proposition 3 in ARP). To our knowledge, this feature is not shared by any other existing moment
inequality procedure that controls size in the finite sample Gaussian model. Specifically, although
relatively insensitive to the inclusion of slack moments, the procedures of Romano, Shaikh and Wolf
(2014) and Andrews and Barwick (2012) are still affected by the inclusion of slack moments via the
first-stage critical value and size-adjustment factor, respectively. The method of Cox and Shi (2019)
is strongly insensitive to the inclusion of slack moments, but does not converge to a one-sided t-test
as the other moments become slack.

5.3 Power in Finite Samples

While the conditional confidence sets have desirable asymptotic properties as the sample size nÑ8,
our results provide no guarantees on their performance in finite samples. Moreover, we anticipate
that the conditional test may have low power in finite samples for cases in which Assumption 3 fails
or is “close to failing,” meaning that the binding and non-binding moments are not well-separated
relative to the sampling variation. An important case where this will occur is when the parameter
of interest θ is point-identified.

To develop intuition for why this may occur, we return to the simple case considered in Remark
2 in which there is only one post-period, the parameter of interest is the treatment effect in the first
period, and the elements of Ỹ are uncorrelated. Recall that in this example, the conditional test
rejects if and only if Φpη̂q´Φpvloq

1´Φpvloq
ą 1 ´ α, where the test statistic η̂ is the maximum standardized

sample moment and vlo is the value of the second-largest standardized sample moment. Note that
if the difference in means between the two largest moments is small (relative to their variance),
then we will have that η̂ « vlo with high probability, in which case the conditional test may not
reject even if the test statistic η̂ is large. This suggests that the conditional approach may have low
power in finite-samples if there are multiple moments that are close to binding at the edge of the
identified set. Recall that when Assumption 3 fails, there are multiple moments that are exactly
binding at the identified set bound. We thus should expect the conditional approach to have poor
power in finite samples in a neighborhood of points where Assumption 3 fails, where the size of the
neighborhood depends on the sampling variation. This is a generic challenge for the conditional
testing approach, and we show that it can lead to poor power in some cases in our simulation study
in Section 8.

Owing to this limitation, we next turn our attention to fixed length confidence intervals (FL-
CIs), which can offer finite-sample improvements in certain special cases of interest, but require
stronger assumptions to obtain the asymptotic guarantees of the conditional approach. Looking
ahead, we will then show how the conditional confidence sets can be hybridized with FLCIs or
least-favorable tests to mitigate poor performance when the moments are not well-separated while
retaining desirable asymptotic properties in a wider range of cases.
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6 Finite-sample Improvements Using FLCIs

We now consider fixed length confidence intervals (FLCIs) based on affine estimators. Although the
FLCIs require additional assumptions to obtain similar asymptotic performance to the conditional
confidence sets, they provide finite-sample guarantees for certain special cases of interest.

6.1 Constructing FLCIs

Following Donoho (1994) and Armstrong and Kolesar (2018, 2019), we consider fixed length confi-
dence intervals based on an affine estimator for θ,

Cα,npa, v, χq “
´

a` v1β̂n

¯

˘ χ, (21)

where a and χ are scalars and v P R¯
T`T̄ . We wish to minimize the confidence interval half-length

χ subject to the constraint that Cα,npa, v, χq satisfies the coverage requirement (11). To do so, note
that a`v1β̂n „ N pa` v1β, v1Σnvq, and hence |a`v1β̂n´θ| „ |N pb, v1Σnvq |, where b “ a`v1β´θ

is the bias of the affine estimator a ` v1β̂ for θ. Observe further that θ P Cnpa, v, χq if and only if
|a` v1β̂n ´ θ| ď χ. For fixed values a and v, the smallest value of χ that satisfies (11) is therefore
the 1 ´ α quantile of the |N

`

b̄, v1Σnv
˘

| distribution, where b̄ is the worst-case bias of the affine
estimator,

b̄pa, vq :“ sup
δP∆,τpostPRT̄

|a` v1pδ `Mpostτpostq ´ l
1τpost|. (22)

Let cvαptq denote the 1´ α quantile of the folded normal distribution |N pt, 1q |.25 Then, for fixed
a and v, the smallest value of χ that satisfies the coverage requirement (11) is

χnpa, v;αq “ σv,n ¨ cvαpb̄pa, vq{σv,nq, (23)

where σv,n :“
?
v1Σnv.

We can therefore construct the minimum length FLCI by choosing the values of a and v to
minimize (23). Intuitively, this minimization optimally trades off bias and variance, since the
half-length χnpa, v;αq is increasing in both the worst-case bias b̄ and the variance σ2

v,n (assuming
α P p0, 0.5sq. When ∆ is convex, this minimization can be solved as a nested optimization problem,
where both the inner and outer minimizations are convex (Low, 1995; Armstrong and Kolesar, 2018,
2019), and is thus simple to compute. We denote by CFLCIα,n the 1´ α level FLCI with the shortest
length,

CFLCIα,n “

´

an ` v
1
nβ̂n

¯

˘ χn,

25If t “ 8, we define cvα “ 8.
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where χn :“ infa,v χnpa, v;αq and an, vn are the optimal values in the minimization.

Example: ∆SDpMq Suppose T ě 1 and the parameter of interest is the treatment effect in the
first post-period, θ “ τ1. For ∆SDpMq, the affine estimator used by the optimal FLCI takes the
form

a` v1β̂n “ β̂n,1 ´
0
ÿ

s“´
¯
T`1

ws

´

β̂n,s ´ β̂n,s´1

¯

, (24)

where the weights ws are potentially negative and sum to one. Thus, the affine estimator used by
the optimal FLCI takes the post-period event-study coefficient for period 1 and subtracts out a
weighted sum of the estimated slopes between consecutive pre-periods. Intuitively, ∆SD restricts
the changes in the slope of the underlying trend across periods, not the slope itself. In order to have
finite worst-case bias, an affine estimator must therefore subtract out an estimate of the slope of the
trend between t “ 0 and t “ 1 using the observed slopes in the pre-period. The worst-case bias will
be smaller if more weight is placed on pre-periods closer to the treatment date, since the trend has
less time to change slope, but it may reduce variance to place more weight on earlier pre-periods.
The weights ws will then be chosen to optimally trade off these sources of bias and variance.

Example: ∆SDPBpMq Suppose again that T ě 1 with θ “ τ1. In the case ∆ “ ∆SDPBpMq, the
optimal FLCI is unchanged from the form given in (24). This is the case because if δ P ∆SDpMq,
then the vector that adds a vector of constant slope to δ, δ̃ “ δ` c ¨ p´

¯
T, ..., T̄ q1, lies in ∆SDpMq as

well. As discussed above, in order to have finite worst-case bias over ∆SDpMq, an affine estimator
must take β̂n,1 and subtract out a weighted average of the pre-period slopes, and by analogous
argument the same holds for ∆SDPBpMq. The bias of such an estimator will thus be the same for
δ as it is for δ̃. Hence, for any δ P ∆SDpMq, there exists δ̃ P ∆SDPBpMq that produces the same
bias by choosing the constant c to be sufficiently large. The FLCI is thus unable to take advantage
of the additional sign restrictions.

Example: ∆RMIpM̄q Suppose that T ě 1 with θ “ τ1. If ∆ “ ∆RMIpM̄q and M̄ ą 0,
then all affine estimators for τ1 have infinite worst-case bias, and the FLCI is thus the entire real
line. To see why, note that since τpost is unrestricted in (22), any affine estimator with finite bias
must set vpost “ e1. Otherwise, the bias of the affine estimator could be made arbitrarily large
by choosing the magnitude of τpost to be large. But, if vpost “ e1, then the bias of the affine
estimator a` v1β̂n equals |a` v1preδpre ` δ1| regardless of the value of τ . By the triangle inequality,
maxt|a ` v1preδpre ` δ̃1|, |a ` v1preδpre ` δ̄1|u ě

1
2 |δ̃1 ´ δ̄1| for any two values δ̃1 and δ̄1. However, as

seen in Figure 2 for the two-period case, the range of values of δ1 that are feasible given a pre-period
trend δpre can be made arbitrarily large by setting δpre such that |δ´1| is large. Hence b̄pa, vq “ 8
for all choices of pa, vq.
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6.2 Consistency and Local Asymptotic Power

We now consider the performance of the optimal FLCIs as n Ñ 8, as we did in Section 5 for the
conditional confidence sets. As made clear by the example for ∆RMI above, in which the FLCI
always has infinite length, the FLCIs will not necessarily be consistent (nor optimal) without addi-
tional restrictions. We show that the FLCIs obtain similar asymptotic properties to the conditional
confidence set if and only if the length of the identified set at δ equals its maximal length over all
possible violations in the class ∆.

First, recall from the discussion in Section 3.2 that when ∆ is convex, the identified set is an
interval. Further, observe from (9) and (10) that the length of the identified set is θub ´ θlb “

bmaxpβpre; ∆q ´ bminpβpre; ∆q, which depends only on ∆ and βpre. We will therefore denote by
LIDp∆;βpreq the length of the identified set. As we will show, the optimal FLCI shares the desirable
asymptotic behavior of the ARP confidence sets when δpre is such that the length of the identified
set is maximal and finite.

Assumption 4 (Identified set maximal length and finite). Suppose δpre is such that LIDp∆, δpreq “
supδ̃preP∆pre

LIDp∆, δ̃preq ă 8.

Remark 5. In our two-period examples, the length of the identified set corresponds with the
height of ∆, and so Assumption 4 holds if and only if ∆ achieves its maximal height at δ´1. Figure
5 shows where this is the case for three of our ongoing examples. As can be seen, the assumption
holds everywhere for ∆SD, for values of δ where the sign restrictions do not bind for ∆SDPB, and
nowhere for ∆RMI . The restrictiveness of Assumption 4 thus depends greatly on ∆. �

Figure 5: Diagram of where Assumptions 4 and 5 hold. The values of δ are colored red
(neither holds), light green (Assumption 4 only), and dark green (both hold).

δ1

δ´1

∆SD
δ1

δ´1

∆SDPB

δ1

δ´1

∆RMI

Our next result shows CFLCIα,n is consistent if and only if Assumption 4 holds, provided that the
identified set is not the equal to the real line (in which case any procedure that controls size is
consistent).
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Proposition 6.1. Suppose that ∆ is convex and α P p0, .5s. Fix δA P ∆ and τA P RT̄ , and suppose
Sp∆, δA ` τAq ‰ R. Then Assumption 4 holds if and only if CFLCIα,n is consistent, meaning for all
θout R Sθp∆, δA ` τAq,

lim
nÑ8

PpδA,τA,Σnq
`

θout P CFLCIα,n

˘

“ 0.

Moreover, if Assumption 4 holds in addition to the conditions in Proposition 5.2, then the FLCI
has local asymptotic power approaching the power envelope.

Proposition 6.2. Fix δA P ∆, τA P RT̄ and suppose Σ˚ is positive definite. Let θubA “ supθ Sp∆, δA`
τAq be the upper bound of the identified set. Suppose that Assumption 3 holds and δA,pre satisfies
Assumption 4. Then, for any x ą 0 and α P p0, 0.5s,

lim
nÑ8

PpδA,τA,Σnq
ˆ

pθubA `
1
?
n
xq R CFLCIα,n

˙

“ lim
nÑ8

sup
Cα,nPIαp∆,Σnq

PpδA,τA,Σnq
ˆ

pθubA `
1
?
n
xq R Cα,n

˙

.

The analogous result holds replacing θubA `
1?
n
x with θlbA´

1?
n
x, for θlbA the lower bound of the identified

set.

Thus, we see that CFLCIα,n behaves similarly to CCα,n as n Ñ 8 when Assumption 4 holds, but it is
otherwise inconsistent in the strong sense that points outside of the identified set are rejected with
non-vanishing probability asymptotically.

6.3 Finite-sample near-optimality

While the FLCIs require stronger conditions to produce the same behavior asymptotically as the
conditional confidence sets, an advantage of the FLCIs is that Armstrong and Kolesar (2018, 2019)
establish finite-sample near-optimality results for particular cases of interest. The following result,
which is an immediate consequence of results in Armstrong and Kolesar (2018, 2019), bounds the
ratio of the expected length of the shortest possible confidence interval that controls size relative to
the length of the optimal FLCI.

Assumption 5. Assume that i) ∆ is convex and centrosymmetric (i.e. δ P ∆ implies ´δ P ∆),
and ii) δA P ∆ is such that pδ ´ δAq P ∆ for all δ P ∆.

Proposition 6.3. Suppose δA and ∆ satisfy Assumption 5. Then, for any τA P RT̄ , Σ˚ positive
definite, and n ą 0,

infCα,nPIαp∆,Σnq EpδA,τA,Σnq rλpCα,nqs
2χn

ě pz1´αp1´ αq ´ z̃αΦpz̃αq ` φpz1´αq ´ φpz̃αqq{z1´α{2,

where λp¨q denotes the length (Lebesgue measure) of a set and z̃α “ z1´α ´ z1´α{2.
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Part i) of Assumption 5 is satisfied for ∆SD but not for our other ongoing examples. For example,
∆SDPB and ∆RMI are convex but not centrosymmetric, and ∆RM is neither convex nor centrosym-
metric. Part ii) of Assumption 5 is always satisfied when parallel trends holds pδA “ 0q. It also holds
whenever δA is a linear trend for the case of ∆SDpMq. We show in Lemma E.29 in the Appendix
that the conditions of Proposition 6.3 imply that Assumption 4 holds. Thus, the FLCIs obtain
finite sample near-optimality in a subset of the cases where they are consistent.

We note that Assumption 5 does not necessarily rule out point identification. For instance, it
is satisfied when ∆ “ ∆SDp0q, which restricts that the differential trend be linear. Recall that
Assumption 3 fails when θ is point-identified, and so the conditional approach may have low power
in such cases. We thus anticipate that FLCIs will outperform the conditional confidence sets in
point-identified cases where Assumption 5 holds.

Finally, for α “ 0.05, the lower bound in Proposition 6.3 evaluates to 0.72, so the expected
length of the shortest confidence possible interval that satisfies the coverage requirement (11) is at
most 28% shorter than the length of the optimal FLCI.

6.4 Comparison to conditional confidence sets

The results above and in the previous section highlight tradeoffs between the conditional confidence
sets and FLCIs. The conditional confidence sets are consistent and have optimal local asymptotic
power under weaker conditions than the FLCIs, but may have low power in finite samples if the
moments are not well-separated. By contrast, when the stronger conditions for consistency are
satisfied, the FLCIs additionally have desirable finite-sample guarantees when ∆ is convex and
centrosymmetric. The balance of these tradeoffs depends on the choice of ∆, as can be seen from
the examples discussed in Section 6.2. At one extreme, there are special cases — such as ∆SD —
in which Assumption 4 is non-restrictive and the conditions for finite sample-near optimality hold.
The FLCIs are preferable in these special cases, as they have similar asymptotic properties to the
conditional approach but also offer finite-sample guarantees. At the other extreme, there are cases
— such as ∆RMI — where the FLCIs are never consistent and thus are undesirable. Matters are
somewhat less clear for intermediate cases between these two extremes. For ∆SDPB, the FLCIs
are consistent for some values of δ but not for others. One can also construct sets ∆ for which the
conditions for consistency and finite-sample near-optimality of the FLCIs hold for some values of
δ P ∆ but for other values of δ the FLCIs are inconsistent.26

To address these intermediate cases, we now turn our attention to hybridized conditional con-
fidence sets, which mitigate the power issues of the conditional confidence sets when the moments
are not well-separated while largely retaining their desirable asymptotic properties.

26For instance, consider the two-period case where ∆ “ ∆SDpMq X tδ : |δ1| ďMu. Then Proposition 6.3
holds for δ “ 0, but Assumption 4 fails for any δ P ∆ with δ´1 ‰ 0.
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7 Conditional-FLCI Hybrid Confidence Sets

We showed in Section 5 that the conditional approach has generally desirable asymptotic properties,
but may perform poorly in finite samples if the moments are not well-separated. In Section 6, we
showed that FLCIs are an attractive alternative with finite sample guarantees for certain special
cases of interest, but may be inconsistent outside of these special cases. It is therefore natural to
ask whether it is possible to mitigate the poor performance of the conditional approach when the
moments are not well-separated while retaining its desirable asymptotic properties.

To address this goal, we now propose a novel confidence set that hybridizes the conditional
test with the optimal FLCI. This conditional-FLCI hybrid confidence set achieves similar desirable
asymptotic properties as the conditional confidence set. Moreover, we find in simulations (discussed
in the following section) that it leads to substantial improvements in the power of the conditional
test in a variety of cases where the moments are not well-separated.

In the Appendix, we also consider a hybridization between conditional confidence sets and
least-favorable critical values, which may be useful in cases, such as ∆RMI , where we know that
the FLCI will be uninformative. Because we only find moderate improvements of this conditional
least-favorable confidence set relative to the conditional confidence set in simulations, we defer the
details to Appendix C.

7.1 Constructing Conditional-FLCI Hybrid Confidence Sets

The conditional-FLCI hybrid confidence set is constructed by first testing whether a candidate
parameter value lies within the optimal level-p1´ κq FLCI, and then applying a conditional test to
all parameter values that lie within the optimal FLCI. In the second stage, we use a modified version
of the conditional test that i) adjusts size to account for the first-stage test, and ii) conditions on
the event that the first-stage test fails to reject.27

Formally, suppose that 0 ă κ ă α. Consider the level p1 ´ κq optimal FLCI, CFLCIκ,n “ an `

v1nβ̂n ˘ χn. Lemma B.2 shows that the distribution of the test statistic η̂ defined in (15) follows a
truncated normal distribution conditional on the parameter value θ̄ falling within the level p1´ κq
optimal FLCI. More concretely,

η̂ |
!

γ˚ P V̂n, Sn “ s, θ̄ P CFLCIκ,n

)

„ ξ | ξ P rvloC-FLCI , v
up
C-FLCIs, (25)

where ξ „ N
´

γ1˚µ̃, γ
1
˚Σ̃nγ˚

¯

, vloC-FLCI , v
up
C-FLCI are defined in Lemma B.2, γ˚ is a vector of Lagrange

multipliers for the primal problem (16), and Sn is the sufficient statistic for the nuisance parameters
as defined in Section 4. With this result, the construction of the second-stage of the conditional-
FLCI hybrid test is analogous to the construction of the conditional test, except it uses the modified

27In simulations, we find that adjusting the conditioning event in the second stage yields better performance
in terms of excess length than simply Bonferroni-adjusting the second-stage conditional test.
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size α̃ “ α´κ
1´κ , which accounts for the first-stage test. Formally, the conditional-FLCI hybrid test

ψC-FLCI is defined as

ψC-FLCI
κ,α pβ̂n, θ̄, Σ̃nq “ 1 ðñ

θ R CFLCIκ,n , OR Fξ | ξPrvloC-FLCI ,v
up
C-FLCI s

pη̂; γ1˚Σ̃nγ˚q ą 1´ α̃,

where, as in Section 4, Fξ | ξPrvloC-FLCI ,v
up
C-FLCI s

p¨; γ1˚Σ̃nγ˚q denotes the CDF of a ξ „ N
´

0, γ1˚Σ̃nγ˚

¯

truncated to rvloC-FLCI , v
up
C-FLCIs.

Since the FLCI controls size, the first stage test rejects with probability at most κ under the
null that θ “ θ̄. Likewise, by the same argument as for the conditional test, the second-stage test
rejects with probability at most α̃ “ α´κ

1´κ conditional on θ P CFLCIκ,n . Together these results imply
that the conditional-FLCI hybrid test controls size,

sup
δP∆,τ

sup
θPSp∆,δ`τq

Epδ,τ,Σnq
”

ψC-FLCI
κ,α pβ̂n, θ̄, Σ̃nq

ı

ď α. (26)

Therefore, we can construct a conditional-FLCI hybrid confidence set for the parameter θ that
satisfies (11) by inverting the conditional-FLCI test,

CC-FLCI
κ,α,n “ tθ : ψC-FLCI

κ,α pβ̂n, θ̄, Σ̃nq “ 0u. (27)

7.2 Asymptotic power of the conditional-FLCI hybrid confidence

sets

We now show that the conditional-FLCI hybrid confidence sets have asymptotic properties similar
to those of the conditional test. First, the conditional-FLCI hybrid is consistent.

Proposition 7.1. The conditional-FLCI hybrid test is consistent. That is, for any δA P ∆, τA P RT̄ ,
θout R Sp∆, δA ` τAq, α P p0, .5s, and κ P p0, αq,

lim
nÑ8

PpδA,τA,Σnq
`

θout R CC-FLCI
κ,α,n

˘

“ 1.

Second, when Assumption 3 holds, the local asymptotic power of the conditional-FLCI hybrid is at
least as good as the power of the optimal level p1´ α̃q confidence set. Thus, when the first-stage κ
is small, the power of the conditional-FLCI hybrid is near the power envelope.

Proposition 7.2. Fix δA P ∆, τA, and Σ˚ positive definite. Suppose Assumption 3 holds. Suppose
α P p0, .5s, κ P p0, αq, and let α̃ “ α´κ

1´κ . Then,

lim inf
nÑ8

PpδA,τA,Σnq
ˆ

pθubA `
1
?
n
xq R CC-FLCI

κ,α,n

˙

ě lim
nÑ8

sup
Cα,nPIα̃p∆,Σnq

PpδA,τA,Σnq
ˆ

pθubA `
1
?
n
xq R Cα,n

˙

.
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The analogous result holds replacing θubA `
1?
n
x with θlbA´

1?
n
x, for θlbA the lower bound of the identified

set (although the constant c˚ may differ).

8 Simulation study

In this section, we present a series of simulations calibrated to 12 recent papers illustrating the
relative performance of the confidence sets discussed above and comparing them to an optimal
benchmark.

8.1 Simulation Design

Our simulations are calibrated using the estimated covariance matrix from the 12 papers surveyed
in Roth (2019). Roth (2019) systematically reviewed the set of papers containing an event-study
plot published in the American Economic Review, AEJ: Applied Economics and AEJ: Economic
Policy between 2014 and mid-2018, and analyzed 12 (out of a total of 70) for which replication data
was available and other criteria (such as reporting standard errors) were met.28 For any given paper
in the survey, we will denote by Σ̂ the estimated variance-covariance matrix from the event-study
in the paper, calculated using the clustering scheme specified by the authors. We then simulate
event-study coefficients β̂s from a normal model under the assumption of parallel trends pδ “ 0q

and zero treatment effects pτpost “ 0q, β̂s „ N
´

0, Σ̂
¯

. The choice of zero treatment effect is only a
normalization, since all of the methods considered are equivariant to shifts in τpost. In simulation s,
we then construct confidence intervals using the pair pβ̂s, Σ̂q for each of our proposed procedures.
In all of our simulations, we use nominal 95% confidence intervals.29

We conduct simulations in this finite-sample normal model with known covariance for both
practical and substantive reasons. We do this because we expect the normal approximation to be a
reasonable approximation to finite-sample behavior in this setting, and because there are tractable
benchmarks for the optimal performance of confidence sets in this context. To examine the quality of
the normal approximation, in Appendix H.2 we report results from a set of simulations calibrated
to the empirical distribution of the first paper in our survey, in which the covariance matrix is
estimated from the data. There, we find that the finite-sample performance of the procedures we
study is indeed well-approximated by that in the normal model.

For a given choice of ∆, we compute the identified set Sp∆, 0q and calculate the expected
excess length for each of the proposed confidence sets. The excess length of a confidence set Cpβ̂q
is the length of the part of the confidence set that falls outside of the identified set, defined as
ELpC; β̂q “ λpCpβ̂qzSp∆, 0qq. We benchmark the expected excess length of our proposed procedures
relative to the optimal bound over confidence sets that satisfy the uniform coverage requirement (11).

28See Section 4.1 of Roth (2019) for a detailed discussion of the sample selection criteria for this survey of
published event studies.

29Following Romano et al. (2014) and ARP, we use κ “ α{10 for our hybrid procedures.
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A formula for this optimal bound is provided in Appendix D, and follows from results in Armstrong
and Kolesar (2018), which use the observation that the confidence set that minimizes expected
(excess) length inverts most powerful (Neyman-Pearson) tests for each candidate parameter value.
For each paper, we conduct 1000 simulations and compute the optimal bound and the average
excess length for the conditional confidence set, FLCI, and conditional-FLCI hybrid confidence set.
We then define the excess length efficiency for each procedure to be the ratio of the optimal bound
to the simulated expected excess length. In the main text, we report the efficiency ratios for the
median paper in the survey. Figures in Appendix H show the maximum and minimum over the
papers in the survey.

We consider three choices of ∆ to highlight the performance of the confidence sets across a range
of conditions. Table 1 summarizes which of our theoretical results hold for each of the simulation
designs. We first consider sets of the form ∆ “ ∆SDpMq. In this simulation design, the conditions
hold for all three procedures to be consistent, and they all have (near-)optimal local asymptotic
power provided M ą 0. The conditions also hold for the FLCIs to have near-optimal expected
length in finite sample. Next, we consider sets of the form ∆ “ ∆SDPBpMq. Under this simulation
design, the conditional (hybrid) confidence sets are again consistent, and are asymptotically (near-)
optimal when M ą 0. However, the conditions needed for the FLCI to be consistent do not hold
when M ą 0. Finally, we consider sets of the form ∆ “ ∆SDIpMq, which combines ∆SD with the
restriction that δ be increasing. In this final specification, only the conditions for the consistency
of the conditional and hybrid confidence sets hold. None of the criteria needed for asymptotic or
finite-sample optimality are satisfied, and the FLCIs are inconsistent when M ą 0.

∆SD ∆SDPB ∆SDI

Conditional / Hybrid
Consistent X X X
Asymptotically (near-)optimal X X ˆ

FLCI
Consistent X ˆ ˆ

Asymptotically (near-)optimal X ˆ ˆ

Finite-sample near-optimal X ˆ ˆ

Table 1: Summary of expected properties for each simulation design

Finally, for each choice of ∆, the units of the parameter M are standardized to equal the
standard error of the first post-period event study coefficient pσ1q. We show results for a variety of
choices of M{σ1. All of the procedures considered and the optimal bounds are invariant up to scale
in the sense that the confidence set using pM, 1

nΣ˚q is 1
n times the confidence set using pnM,Σ˚q.

Thus, our simulation results on excess length asM{σ1 grows large are isomorphic to our asymptotic
results presented earlier in which nÑ8 for Σn “

1
nΣ˚ and M ą 0 fixed. They also, however, have

a finite-sample interpretation, illustrating how our results change as we allow the set of underlying
trends to be more non-linear, holding Σ˚ constant. In the main text, the parameter of interest in
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all simulations is the causal effect in the first post-period (θ “ τ1).
In Appendix H, we present several extensions to the main simulation exercise discussed here.

First, we repeat the simulation study, setting the parameter of interest to be the average causal
effect across all post-periods (θ “ τ̄post), with qualitatively similar results. Second, we present results
for the conditional-least favorable hybrid discussed briefly in Section 7 and detailed in Appendix
C. Finally, we present simulation results for ∆ “ ∆RMIpM̄q. This choice of ∆ illustrates the
performance of our proposed confidence sets in a case in which the FLCI is always infinite length,
but the conditional and hybrid approaches remain consistent.

8.2 Simulation Results

Results for ∆SDpMq: The top panel of Figure 6 plots the efficiency ratio for each of our
procedures as a function of M{σ1 when ∆ “ ∆SD. As expected, all of the procedures perform well
asM{σ1 grows large, with the efficiency ratios approaching 1. This illustrates our asymptotic (near-)
optimality results for all the procedures considered in this simulation design. The FLCIs also perform
quite well for smaller values of M{σ1, including the point-identified case where M “ 0, illustrating
the finite-sample near-optimality results for the FLCIs when Assumption 5 holds. Although the
conditional confidence sets have efficiency approaching the optimal bound for M{σ1 large, their
efficiency whenM{σ1 “ 0 is only about 50%. This reflects the fact that whenM “ 0, the parameter
is point-identified and so Assumption 3 fails, leading to low power for the conditional test. We see
that the conditional-FLCI hybrid substantially improves efficiency for small values of M{σ1, while
still retaining near-optimal performance as M{σ1 grows large.

Results for ∆SDPBpMq: The middle panel of Figure 6 plots the efficiency ratio for each of our
procedures as a function ofM{σ1 when ∆ “ ∆SDPB. Again, the efficiency ratios for the conditional
and hybridized confidence sets are (near-)optimal asM{σ1 grows large, highlighting our asymptotic
(near-)optimality results for these procedures in this simulation design. However, the efficiency
ratios for the FLCIs steadily decrease as M{σ1 increases, which reflects the fact that the FLCIs
are not consistent in this simulation design when M ą 0. We again see that the conditional-FLCI
hybrid improves efficiency when M{σ1 is small, while retaining near-optimal performance as M{σ1

grows large.

Results for ∆SDI The bottom panel of Figure 6 plots the efficiency ratio for each of our proce-
dures as a function of M{σ1 when ∆ “ ∆SDI . As discussed above and summarized in Table 1, the
conditions for asymptotic (near-)optimality do not hold for any of our procedures in this simulation
design. Nonetheless, we see that the conditional and hybrid procedures still perform quite well for
large values of M{σ1, with efficiency approaching about 90%. We find this evidence encouraging as
it shows that they may perform well asymptotically in cases where Assumption 3 fails. We again
see that the efficiency of the FLCIs degrades as M{σ1 grows, reflecting the fact that the FLCIs are
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Figure 6: Simulation results: Median efficiency ratios for proposed procedures.

Note: This figure shows the median efficiency ratios for our proposed confidence sets. The efficiency ratio for
a procedure is defined as the optimal bound divided by the procedure’s expected excess length. Results are
averaged over 1000 simulations for each of the 12 papers surveyed, and the median across papers is reported
here. See Section 8 for details.
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inconsistent under this simulation design when M ą 0. Finally, we note that as in the previous
simulations, the conditional-FLCI hybrid improves efficiency when M{σ1 is small, while retaining
similar performance to the conditional approach as M{σ1 grows large.

8.3 Key takeaways from the simulation study

Summarizing our results from the simulation study, we find that the conditional confidence sets
perform well across a range of applications but can have low power when the moments are not
well-separated. In contrast, the FLCIs perform well in terms of excess length when the needed
conditions for consistency and finite-sample optimality are satisfied (e.g. ∆SDpMq) but perform
quite poorly elsewhere (e.g. ∆SDPBpMq and ∆SDIpMq). Across each choice of ∆ considered, the
conditional-FLCI hybrid confidence set performs well in terms of excess length for all values of
M{σ1.

Based on these results, our recommended approach depends on the properties of the set ∆. In
special cases, such as ∆SD, in which the assumptions for consistency of the FLCIs are non-restrictive
and the finite-sample optimality conditions are met, we recommend the FLCIs. Outside of these
special cases, we recommend the use of a hybrid approach using the conditional confidence sets.
Our simulations suggest that the FLCI-hybrid works quite well for cases that combine ∆SD with
sign or shape restrictions, and we thus recommend its use for such cases. For cases such as ∆RMI ,
where we know that the FLCIs will be uninformative, we recommend the conditional-least favorable
hybrid approach discussed in Appendix C.

9 Practical Guidance

This section provides practical guidance on how the methods developed in this paper can be used
to assess the robustness of conclusions in difference-in-differences and event-study designs. The
R package HonestDiD provides functions for easy and fast implementation of our recommended
approach. As an overview, we recommend that researchers conduct the following steps to assess the
robustness of their conclusions in difference-in-differences and related designs.

1) Estimate an “event-study”-type specification that produces a vector of estimates β̂, consisting
of “pre-period” coefficients β̂pre and “post-period” coefficients β̂post, where the post-period coef-
ficients have a causal interpretation under a suitable parallel trends assumption.

2) Perform a sensitivity analysis where inference is conducted under different assumptions about the
set of possible violations of parallel trends ∆. For particular null hypotheses of interest, report
the “breakdown” point at which the null can no longer be rejected (i.e. the least restrictive ∆

(among some class of restrictions) at which the null is no longer rejected).
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3) Provide economic benchmarks for evaluating the different choices of ∆. This can be done using
information about potential confounding factors or using information from pre-treatment periods
or placebo groups.

We provide additional details on each of the steps in the subsequent subsections. We also provide
two illustrations of this approach in our applications in Section 10.

9.1 When to Use Our Methods

The methods in this paper can be applied in most practical settings in which researchers use an
“event-study plot” to evaluate pre-existing trends. Specifically, to use our methods, we require one
to have an estimator β̂n with an asymptotic normal limit,

?
npβ̂n´βq Ñd N p0, Σ˚q. Our methods

are applicable when β satisfies the decomposition

β “

˜

0

τpost

¸

loooomoooon

causal effect

`

˜

δpre

δpost

¸

loooomoooon

bias from trend

,

where τpost is a vector of causal parameters of interest, and one is willing to place restrictions on
the relationship between the pre-period difference in trends δpre and the post-period bias δpost. We
now show how this framework can can accommodate two considerations that commonly arise in
practice: i) staggered treatment timing, and ii) anticipatory effects.

Consider first the case with staggered treatment timing. A recent literature has shown that when
there is staggered treatment timing and heterogeneous treatment effects across cohorts, the coef-
ficients from standard two-way fixed effect models may not be causally interpretable. Specifically,
even under a strong parallel trends assumption, the probability limit of the pre-period coefficients
βpre may be non-zero and the probability limit of the post-period coefficients βpost may not cor-
respond with a convex weighted averages of cohort-specific treatment effects at a particular lag
(Abraham and Sun, 2018). To address these issues, Abraham and Sun (2018) and Callaway and
Sant’Anna (2019) provide alternative strategies for estimating weighted averages of cohort-specific
treatment effects at a fixed lag (or lead) relative to treatment, which yield consistent estimates
under a suitable parallel trends assumption.30 The estimates for different leads and lags can be
aggregated to form a vector of coefficients β̂n resembling a traditional “event-study plot.” Moreover,
these estimates are asympotically normal under mild regularity conditions, and so our recommended
sensitivity analysis can be then be applied to gauge sensitivity to violations of the needed parallel
trends assumption. In settings with staggered treatment timing where the researcher is not willing
to assume homogeneous treatment effects, we therefore recommend that researchers first use the

30Specifically, the generalized parallel trends assumption requires that the untreated potential outcomes
for treated cohorts on average be parallel to the untreated outcomes for the never-treated group. See, e.g.,
Assumption 2 of Callaway and Sant’Anna (2019).
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methods of Abraham and Sun (2018) or Callaway and Sant’Anna (2019) for estimation and then
apply our results to conduct sensitivity analysis.

Next, consider the case where there may be changes in behavior in anticipation of the policy of
interest. In such cases, βpre may reflect the anticipatory effects of the policy rather than differences
in untreated potential outcomes between the treated and untreated groups (Malani and Reif, 2015).
This presents a challenge to our approach, which intuitively relies on placing restrictions on the
relationship between pre-treatment and post-treatment differences in untreated potential outcomes.
There is, however, a simple solution if one is willing to impose that anticipatory effects can only
occur in a fixed window prior to the policy change — e.g., because policy is announced one year
before it takes effect. In this case, one can re-normalize the definition of the “pre-treatment” period
to be the period prior to when anticipatory effects can occur, in which case βpre is determined only
based on untreated potential outcomes.

9.2 Sensitivity Analysis

To conduct sensitivity analysis, we recommend that researchers report confidence sets under different
assumptions about the set of possible violations of parallel trends ∆. This allows the reader to
evaluate what assumptions need to be imposed in order to obtain informative inference.

For instance, in many cases a reasonable baseline choice for ∆ may be a set of the form ∆SDpMq,
which recall from Section 2.3 relaxes the assumption of linear differences in trends by imposing that
the slope of the differential trend can change by no more than M in consecutive periods. By
reporting robust confidence sets for different values of M , the researcher can then evaluate the
extent to which their conclusions change as we allow for the possibility of greater non-linearities
in the underlying trend. If there is a particular null hypothesis of interest (e.g. the treatment
effect is zero), the researcher can report the “breakdown” value of M at which the null hypothesis
can no longer be rejected.31 The researcher could then also assess how these conclusions change if
they impose further sign or shape restrictions motivated by economic knowledge — e.g. the bias is
weakly positive, or the trend is monotone.

9.3 Evaluating a choice of ∆

When conducting sensitivity analysis over possible choices of ∆, researchers may wonder how to
evaluate whether a particular choice of ∆ is reasonable. For instance, suppose a researcher is
considering sets of the form ∆SDpMq, which relaxes the assumption of linear differences in trends
by allowing the slope of the differential trend to change by M across periods. How, then, should
she evaluate what value of possible non-linearity M is reasonable? For ease of exposition, we focus

31Formally, one can show that if CpMq satisfies (11) for ∆SDpMq, then the sample breakdown value,
M̂BE :“ inftM : θ0 P CpMqu, is a valid p1 ´ αq-level lower bound for the population breakdown value,
MBE :“ inftM : θ0 P Sp∆SDpMq, βqu. That is, P

´

M̂BE ďMBE

¯

ě 1´ α.
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on how to evaluate M in this case, although analogous remarks apply to conducting sensitivity for
other forms of ∆ as well.

We stress that nothing in the data itself can place an upper bound on the parameter M . This is
becauseM places limits on the possible non-linearity in the counterfactual difference in trends δpost,
which is not identified from the data. Researchers therefore must use domain-specific knowledge
to evaluate whether a particular choice of M is plausible in a given empirical setting. To help
researchers do so, we discuss two approaches that benchmark possible values of M using knowledge
of potential confounds and using untreated groups or periods. These benchmarking exercises may be
useful in calibrating the restrictiveness of a particular set of assumptions about the counterfactual
difference in trends.

Benchmarking using knowledge of potential confounds. One way to calibrate M is to
consider the types of mechanisms which may produce a violation of parallel trends, and to benchmark
M using knowledge of the likely magnitudes of those mechanisms. We provide an example of this
type of reasoning in our application to Lovenheim and Willen (2019) in Section 10. In that setting,
there are concerns that differential changes in education quality across states may produce non-
parallel trends in employment outcomes, and we benchmark the magnitude of such changes using
estimates of the effects of teacher value-added on employment outcomes from Chetty, Friedman and
Rockoff (2014). This suggestion echoes Kahn-Lang and Lang (2018), who advocate for the use of
domain-specific knowledge in justifying the parallel trends assumption. �

Benchmarking using untreated groups or periods. In some settings, researchers may
have a set of untreated (placebo) groups who they think are “at least as dissimilar” as the groups
used in their main analysis. In this case, it may be sensible to form a confidence interval for the
largest change in slope between periods among the placebo groups, and use the upper bound of
that interval as a benchmark for M .32 This allows researchers to make statements of the form, “we
can reject the null hypothesis unless we allow for changes in slope more than X times as large as
the upper bound for the largest change observed for the placebo groups.” Along similar lines, one
could also construct an upper bound on the largest change in slope in the pre-period for the groups
used in the main event-study of interest. One could then benchmark M in terms of multiples of the

32A simple way of forming such an interval is as follows: Let β̂placebo be the vector of estimated event-
study coefficients for the placebo groups, and δplacebo its expectation. We wish to form a lower one-sided
CI for Mplacebo :“ maxjpA

SDδplaceboqj , where ASD is the matrix that creates second differences. Let
ubj “ pA

SDβ̂placeboqj `σjz1´α be the upper bound of a standard one-sided confidence interval for the mean
of pASDβ̂placeboqj , where σj is the standard deviation of pASDβ̂placeboqj . Define ub :“ maxj ubj . Then
p´8, ubs is a level p1´αq CI forMplacebo. Proper coverage of this CI follows from results by Berger and Hsu
(1996) on the “union-intersection” approach, since H0 : Mplacebo ě m is equivalent to H0 : E

”

ASDβ̂placebo
ı

P
Ť

jtµ : µj ě mu.
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largest value observed in the pre-period.33 �

We note that while an upper bound on the parameter M may not be learned from the data, the
observed pre-period data can possibly provide an informative lower bound on possible values of M .
We now discuss how such a bound can be constructed, and how it should (and should not) be used.

Lower bounding M . Recall that M is an upper limit on how much the slope of δ can change
between periods. Thus, the largest second difference in δpre must be no larger than M in absolute
value. Since δpre is the expected value of the pre-period coefficients β̂pre, we can test this hypothesis
using the pre-period coefficients. In particular, we can reject a value of M if we reject the null
hypothesis H0 : E

”

ASDβ̂pre

ı

ď M , where ASD is the matrix that produces the positive and

negative second differences of β̂pre. This is again a test of a system of moment inequalities, and can
be tested using the conditional test described in Section 4.34

This exercise is a sensible approach to test whether a given value of M is rejected by the data,
and researchers should be skeptical of confidence sets relying on small values of M that are strongly
rejected by the data. We caution, however, that this exercise provides only a lower bound on the
possible value of M . The fact that the pre-period second differences in δ are small does not on its
own place a bound on how large the second differences in the post-period could have been under the
counterfactual. Thus, if a small value of M is not rejected by the data, we should not necessarily
conclude that it is reasonable. We specifically caution against concluding that M “ 0 (i.e. linear
violations of parallel trends) is reasonable simply because it cannot be rejected by the data. We
further note that relying on such tests raises standard concerns associated with pre-testing.

9.4 Choice of Confidence Sets and Computation

As discussed in detail in Section 8.3, we recommend that researchers select either the optimal FLCI
or a hybridized conditional confidence set based upon the properties of their specified choice of ∆.
For special cases (e.g. ∆ “ ∆SDpMq) where the conditions for the consistency of the FLCIs are
non-restrictive and the conditions for finite-sample near-optimality under parallel trends hold, we
recommend that the researchers use the optimal FLCI. Otherwise, we recommend that researchers
use a hybrid confidence set that hybridizes the conditional approach with the optimal FLCI or with

33We view the exercise of upper-bounding the largest change in the pre-period slope (Mpre) as a way of
casting the assumption that ∆ “ ∆SDpMq in easily-interpretable units. If one instead wants to use this
as the basis of an identifying assumption (i.e. assuming that the post-period change in slope is no larger
than the largest pre-period change), then a tractable method for obtaining valid inference over the implied
∆ is to first form a level 1´ α{2 upper bound on Mpre, say M̂ub

pre, and then estimate a robust 1´ α{2 level
confidence set using ∆SDpM̂ub

preq.
34More generally, the null H0 : δ P ∆ “ tδ : Aδ ď du is equivalent to H0 :

Dτpost s.t. E
”

Apβ̂ ´Mpostτpostq ´ d
ı

ď 0, which can be tested using the conditional test, or the conditional-
LF test described in the Appendix.
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a least-favorable test. These confidence sets are all quick and straightforward to compute. For
example, each of the sensitivity analysis plots in Section 10 take less than 10 minutes to produce
on a 2014 Macbook Pro. Our R package HonestDiD by default chooses our recommended method
depending on the specified choice of ∆, but allows the user to override these defaults.

10 Empirical Applications

We now apply our methods to two recently published papers. In doing so, we illustrate how empirical
researchers can use our methods to conduct formal sensitivity analyses in difference-in-differences
and event-study designs.

10.1 The effect of duty-to-bargain laws on long-run student out-

comes

We first apply our results to the analysis of the effects of teacher collective bargaining on long-run
student outcomes in Lovenheim and Willen (2019, henceforth LW).

LW study the impact of state-level public sector duty-to-bargain (DTB) laws, which mandated
that school districts bargain in good faith with teachers’ unions. The majority of these laws were
passed in the 1960s-1980s. LW use data from the American Community Survey (ACS) from 2005-
2012 to examine the impacts of these laws on the adult labor market outcomes of people who
were students around the time that these laws were passed. Their identification strategy compares
individuals across different states and different birth cohorts to exploit the differential timing of
the passage of DTB laws across states. In particular, the authors estimate the following regression
specification separately for men and women,

Ysct “
21
ÿ

r“´11

Dscrβr `X
1
sctγ ` λct ` φs ` εsct. (28)

Ysct is an average outcome for the cohort of students born in state s in cohort c in ACS calendar
year t. Dscr is an indicator for whether state s passed a DTB law r years before cohort c turned age
18.35 Thus, the coefficients tβ̂ru estimate the dynamic treatment effect (or placebo effect) r years
after DTB passage. The remaining terms in the regression are time-varying controls, birth-cohort-
by-ACS-year fixed effects, and state fixed effects. Standard errors are clustered at the state level,
and we normalize the coefficient β´2 to 0.36

35Dsc,´11 is set to 1 if state s passed a law 11 years or more after cohort c turned 18. Likewise, Dsc,21 is
set to 1 if state s passed a law 21 or more years before cohort c turned 18.

36LW normalize event time -1 to 0, but discuss how cohorts at event time -1 may have been partially
treated, since LW impute the year that a student starts school with error. Since our robust confidence sets
assume that there is no causal effect in the pre-period (τpre “ 0), we instead treat event-time -2 as the
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Figure 7: Event-study coefficients tβru for employment, estimated using the event-study
specification in (28).

For illustration, we focus on the results where the outcome is employment. Figure 7 plots the
event-study coefficients tβ̂ru estimated from the specification in (28). In the event-study for men
(left panel), the pre-period coefficients are relatively close to zero, whereas the longer-run post-
period coefficients are negative. Following standard practice, LW interpret the β̂r as estimates of
the causal effect of DTB laws on hours worked for men. By contrast, the results for women (right
panel) suggest a downward-sloping pre-existing trend. LW therefore focus on the results for men,
and “urge caution in lending a causal interpretation” to the results for women owing to the pre-
existing trend. This example therefore allows us to show both how our methodology can be used to
gauge the robustness of results when we do not detect an underlying trend, as well as to construct
confidence intervals for the treatment effect of interest when parallel trends is clearly violated.

Figure 8 reports the results of a sensitivity analysis wherein we construct robust confidence sets
under varying assumptions on the class of possible violations of parallel trends. To fix ideas, we
conduct sensitivity analysis for the treatment effect on employment for the cohort 15 years after the
passage of a DTB law, as in Table 2 of LW. In blue, we plot the original OLS confidence intervals
for β̂15 from specification (28). In red, we plot robust confidence sets when ∆ “ ∆SDpMq for
different values ofM . We construct the confidence sets using FLCIs, following our recommendation
for the case when ∆ “ ∆SD. Turning first to the results for men in Figure 8, we see that the OLS
point estimates are negative and the confidence intervals rule out zero. Our conclusions are fairly
similar when we allow for the possibility of linear violations of parallel trends (M “ 0). However,
as we begin to allow for non-linear violations of parallel trends, the confidence sets become less
informative. For instance, when M “ 0.01, the upper bound of the confidence set is close to 0,
whereas for M “ 0.04 the upper bound is about 4 p.p. Turning next to the results for women in

reference period in our analysis.
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Figure 8, we see that the original OLS estimates are negative and the confidence interval rules out
0. When we allow for linear violations of parallel trends pM “ 0q, however, the picture changes
substantially owing to the pre-existing downward trend that is visible in Figure 7. Indeed, forM “ 0

the robust confidence set contains only positive values. Intuitively, this is because β̂15 lies above the
linear extrapolation of the downward trend in the pre-period. Once again, as M grows larger, the
robust confidence sets become wider. Interestingly, we again include 0 within the robust confidence
set for M around 0.01.

Figure 8: Sensitivity analysis for θ “ τ15 using ∆ “ ∆SDpMq

We next show how we can incorporate context-specific knowledge into the restrictions that
we use in our sensitivity analysis. LW attribute the downward-sloping pre-trend in employment
for women to “secular trends” affecting female labor supply. It seems reasonable to assume that
such trends would have continued absent treatment, which motivates the shape restriction that δ
is monotonically decreasing. In Figure 9, we show how the sensitivity analysis changes when we
incorporate this shape restriction, comparing the results discussed above using ∆ “ ∆SDpMq to
those using ∆ “ ∆SDD :“ ∆SDpMq X tδ : δt ď δt´1,@tu. The confidence sets imposing the sign
restrictions are constructed using the conditional-FLCI hybrid described in Section 7, following
our recommendation for sets of the form ∆SDD. With the added monotonicity restrictions, the
lower bound of the robust confidence set never falls substantially below the lower bound of the
OLS confidence interval, even when M is large. This is intuitive, since the restriction that δ is
decreasing implies that the OLS coefficient is weakly downward biased. We thus see that imposing
shape restrictions motivated by context-specific knowledge can be informative in obtaining tighter
bounds.

The results above highlight that our confidence in the degree to which DTB laws affect employ-
ment depends on the parameter M , which represents the extent to which the slope of the difference
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Figure 9: Sensitivity analysis with and without imposing monotonicity

(a) Without monotonicity (∆SDq (b) With monotonicity (∆SDDq

in trends can change from period to period. Following the guidance provided in Section 9.3, we now
discuss two ways for evaluating the reasonableness of various choices of M .

We begin with an evaluation of what values of M are rejected by the data using information
from the pre-period. For men, the pre-period data does not provide an informative lower bound
on M ; we cannot reject M “ 0 (i.e. linear trends) at conventional levels. For women, we obtain
a p-value of 0.03 for the hypothesis that M “ 0. The data thus provide some evidence against
linear trends for women, although not overwhelmingly so. The lowest value of M which we do not
reject at the 5% level for women is 0.28. The robust confidence set using ∆SD with M “ 0.28 is
r´58, 38s, which includes quite large effects in either dimension. (We do not plot this confidence
interval in Figure 8 so as to maintain a reasonable scale on the plot.) The robust confidence set with
∆ “ ∆SDD andM “ 0.28 is r´4.4, 43s. Thus, again we obtain a somewhat informative lower bound
when imposing sign restrictions motivated by context-specific knowledge, even at larger values of
M .

Finally, we benchmark M using context-specific knowledge of possible mechanisms that could
produce non-parallel trends. One concern in this setting is that education quality may have evolved
differently in states that passed DTB laws even if the DTB laws had not been passed. This would
lead to a violation of parallel trends if education quality directly impacts employment. Chetty et
al. (2014) estimate that a 1 standard deviation increase in teacher value-added corresponds with a
0.4 percentage point increase in adult employment. We can use this estimate to calibrate M under
the thought experiment in which violations of parallel trends are driven by different evolutions
of teacher quality. (We can alternatively think of this as measuring other confounds in units of
“teacher-quality equivalents.”) For instance, a value of M “ 0.01 would correspond with allowing
for changes in the differential slope of teacher quality of about one-fourtieth of a standard deviation.
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Since the robust confidence sets for both men and women begin to include 0 for M roughly equal
to 0.01, the strength with which we can rule out a null effect depends on our assessment of the
plausibility of such non-linearities.

10.2 Estimating the incidence of a value-added tax cut

Our second empirical application is to Benzarti and Carloni (2019, henceforth, BC), who study the
incidence of a decrease in the value-added tax (VAT) on restaurants in France. France reduced its
VAT on sit-down restaurants from 19.6 to 5.5 percent in July of 2009. BC analyze the impact of
this change using a dynamic difference-in-differences design that compares restaurants to a control
group of other market services firms, who were not impacted by the VAT change. Their regression
specification is

Yirt “
2012
ÿ

s“2004

βs ˆ 1rt “ ss ˆDir ` φi ` λt ` εirt, (29)

Figure 10: Event-study coefficients tβsu for log profits, estimated using the event-study
specification in (29).

where Yirt is an outcome of interest for firm i in region (i.e. département) r in year t; Dir is an
indicator for whether firm i in region r is a restaurant; and φi and λt are firm and year fixed effects.
The coefficient β2008 is normalized to 0. Standard errors are clustered at the regional level. BZ
are interested in the incidence of the VAT cut on firm owners, consumers, and employees, and they
therefore estimate specification (29) using profits, prices, wages, and employment as the outcome.
Their main finding is that there is a large effect on restaurant profits, and so we focus on this
outcome. Figure 10 shows the estimated coefficients from specification (29) when the outcome is
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the log of (before-tax) restaurant profits.37 The figure shows relatively flat pre-trends, although
there is a significant coefficient for 2007, and a seemingly large jump in 2009, the first treated year.

The left panel of Figure 10 shows a sensitivity analysis for the treatment effect in 2009 using
∆ “ ∆SDpMq. As expected, the robust confidence sets become wider as we allow M to increase.
Nonetheless, the confidence sets contain only positive values unless M exceeds 0.2. We can thus
reject a null effect on profits in 2009 if we are willing to restrict the slope of the differential trend
to change by no more than 20 log points between periods. To provide additional context for the
magnitudes of M , we consider benchmarks using changes in slope in the pre-period, as discussed
in Section 9.3. Using a 5% level test, we obtain a lower bound on M of 0.1 using the pre-period
data. Intuitively, we reject small values of M owing to the spike in 2007 in the pre-period. Using
a 5% test, we also obtain an upper bound on the largest change in slope in the pre-period of 0.2.
Thus, we can reject a null effect in 2009 unless we are willing to allow for changes in slope of the
underlying trend that are somewhat larger than the upper bound for the largest change in slope in
the pre-period.

Figure 11: Sensitivity analysis for θ “ τ2009 using ∆ “ ∆SDpMq and ∆ “ ∆SDNBpMq.

Using context-specific knowledge, BC argue that their estimates likely understate the effect of
the VAT cut on profits. In particular, the VAT cut occurred at the same time that a payroll subsidy
for restaurants was terminated, and the authors additionally suspect that the VAT cut may have
reduced incentives to under-report costs to the tax authority. Since these mechanisms would have
a negative effect on profits, BC therefore write that “a conservative interpretation of our results is
that we are estimating a lower bound on the effect of the VAT cut on profits” (pg. 40). We can make
this argument precise in our framework by imposing that the bias of the post-period event-study
coefficients is negative. The right panel of Figure 11 imposes the additional constraint that the sign

37BZ drop observations with zero profits from their specification. They report finding similar results using
the inverse hyperbolic sine.
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of the bias be negative — that is, we set ∆ “ ∆SDNB :“ ∆SDpMq X tδ : δpost ď 0u. With the
added constraint on the sign of the bias, the robust confidence sets rule out effects on profits smaller
than 15 log points for all values of M . The conclusion that the VAT cut had a substantial positive
impact on profits is thus highly robust if we are willing to incorporate these sign restrictions.

Our results so far have focused on the robustness of the results for 2009, the first year after
treatment. The results are substantially more sensitive if we consider the treatment effect for 2012,
the least year in the sample. For instance, the FLCI using ∆SD with M “ 0.1, the lower bound
on M from the pre-period, is r´0.7, 1.5s, which includes quite large effects in both directions. The
reason for this is that secular differences in trends have more time to accumulate when we consider
periods farther after treatment. Hence, in general, confidence sets for later post-periods will tend
to grow faster as we increase the allowed degree of non-linearity in the underlying trends.38

11 Conclusion

This paper considers the problem of conducting inference in difference-in-differences and related
designs that is robust to violations of the parallel trends assumption. Our approach formalizes the
intuition underlying pre-trends tests, which is that the pre-trends are informative about the post-
treatment differences in trends that would have occurred absent treatment. We consider a variety of
possible restrictions on the class of possible differences in trend that make this intuition precise, and
introduce powerful inference procedures that are uniformly valid so long as the difference in trends
satisfies these restrictions. In practice, we recommend that researchers use our proposed confidence
sets to conduct formal sensitivity analyses, in which they report confidence sets for the causal effect
of interest under a variety of possible restrictions on the underlying trends. This exercise makes
it transparent what assumptions are needed in order to obtain informative inference and assess
whether those assumptions are plausible in a given setting.

We finish by discussing several potential directions for future research. First, while we have fo-
cused on robustness to violations of the parallel trends assumption, similar tools could be developed
for alternative methods for inference in panel settings that rely on different identifying assumptions.
Examples include the synthetic control method (Abadie, Diamond and Hainmueller, 2010), which
relies on a “convex hull” assumption, and the non-linear difference-in-differences estimator of Athey
and Imbens (2006). Second, throughout this paper, we adopt a super-population perspective on
inference in difference-in-differences and event-study designs, in which the units are sampled ran-
domly from some larger super-population. Athey and Imbens (2018) consider an alternative setting
in which the observed units are viewed as a fixed, finite population and the critical identifying

38We note that this conclusion holds when ∆ allows for smooth secular difference in trends that can grow
over time (as when ∆ “ ∆SDpMq). One could in principle specify ∆ such that the bounds on the magnitude
of the bias are tighter in periods farther from treatment. This might be sensible in certain cases — for
instance, if one suspects that policy is passed in response to temporary, short-run shocks that revert to the
mean over longer horizons.
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assumption is that the timing of treatment is completely random. An interesting open question
is how to conduct inference that is robust to possible non-random treatment timing in this finite-
population setting. Finally, pre-trends testing is but one example of the wide use of placebo testing
in quasi-experimental research designs. Similar methods could potentially be extended to conduct
robust inference in other types of quasi-experimental research designs.
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